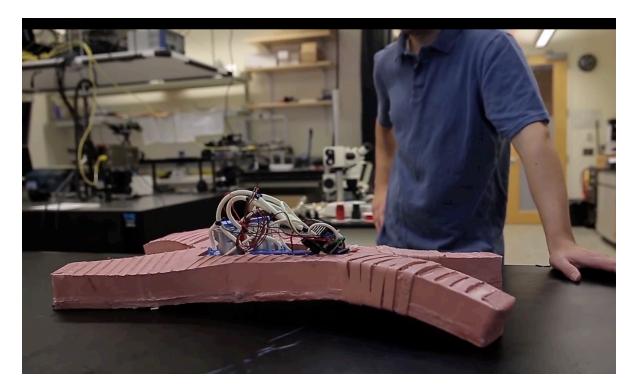


E160 – Lecture 4 Autonomous Robot Navigation

Instructor: Chris Clark

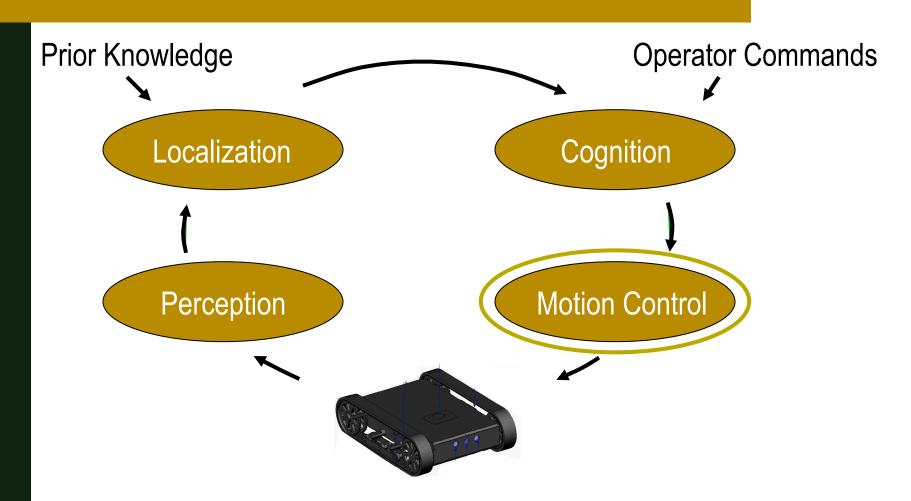
Semester: Spring 2016

Soft Robotics



https://www.youtube.com/watch?v=_OJrwCP24cl

Control Structures Planning Based Control



Point Tracking

- 1. P Control
- 2. Linear Systems
- 3. Motion Control
- 4. Reachable Space

- Proportional Feedback Control P Control
 - Uses the error between the desired and measured state to determine the control signal.

• If $x_{desired}$ is the desired state, and x is the actual state, we define the error as:

$$e = x_{desired} - x$$

The control signal u is calculated as

$$u = K_P e$$

where K_P is called the proportional gain.

u

Example:

 Consider the orientation control of an autonomous helicopter. Assume the orientation is completely controlled by the rear rotor.

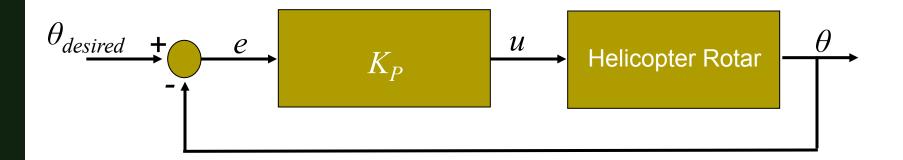
- Example cont':
 - The control signal *u* is calculated as

$$u = K_P(\theta_{desired} - \theta)$$

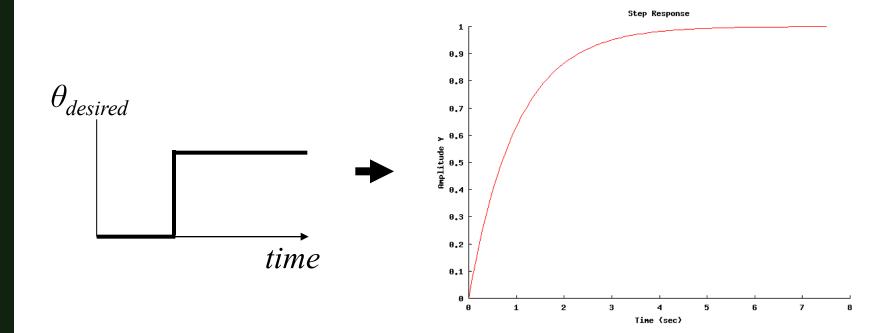
- Notes:
 - If $\theta_{desired} = \theta$, the control signal is θ .
 - If $\theta_{desired} < \theta$, the control signal is negative, resulting in an decrease in θ .
 - If $\theta_{desired} > \theta$, the control signal is positive, resulting in an increase in θ .
 - lacktriangle The magnitude of the increase/decrease depends on K_p

Block Diagram:

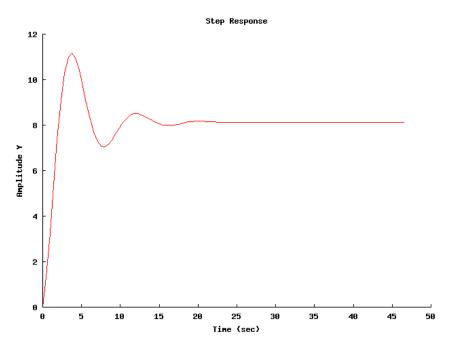
$$u = K_P(\theta_{desired} - \theta)$$



- Time Domain Response of step response
 - Step from $\theta_{desired} = 0$ to $\theta_{desired} = 1$.



- Time Domain Response:
 - Step from $\theta_{desired} = 0$ to $\theta_{desired} = 8$.
 - Different dynamics in this example... overshoot!



Point Tracking

- 1. P Control
- 2. Linear Systems
- 3. Motion Control
- 4. Reachable Space

- Recall that the forward kinematics are a linear differential equation.
- We will use this equation to help develop a motion controller for point tracking
- We start by observing how the state x behaves if it obeys the following equation:

$$\dot{x} = dx/dt = ax$$

where a is a constant

It should be obvious that the solution to the equation

$$\dot{x} = ax$$

is

$$x(t) = x_0 \exp(at)$$

where

 x_0 is the initial state

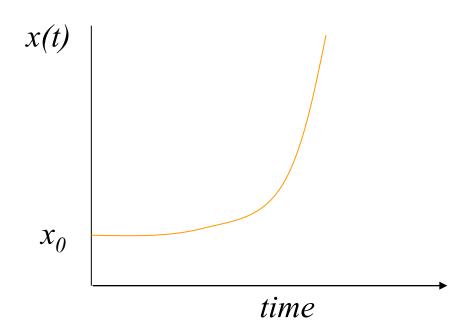
To confirm this solution, substitute into the original equation:

$$\dot{x} = ax$$

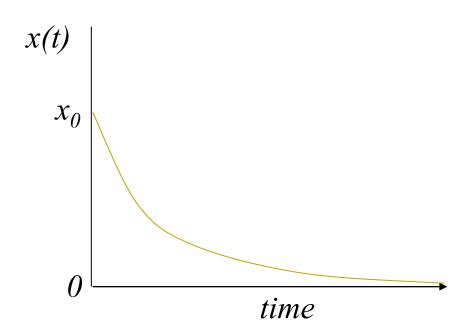
$$d[x_0 \exp(at)]/dt = a[x_0 \exp(at)]$$

$$ax_0 \exp(at) = ax_0 \exp(at)$$

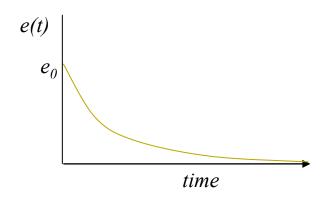
■ To view how the state x behaves over time, we can plot out $x = x_0 \exp(at)$, assuming a is positive:



• If a is negative and we can plot out $x=x_0 exp(at)$, we get much different results:



- This exponential decay informs us that the state x decays to zero over time.
 - We say this system is "STABLE".
 - We use this property in control theory to drive states down to zero (e.g. if $e = x_{desired} x$, drive e to θ).



- The above example was a one dimensional linear system (i.e. single state x).
- Our system is a multi-dimensional system (i.e. 3 states x, y, θ).
- We need to describe the system with matrices:

$$\dot{x} = Ax$$

where A is a matrix such that $A \in \mathbb{R}^{n \times n}$ x is a vector such that $x \in \mathbb{R}^{l \times n}$

■ The eigen values of A, represented by λ_i , are coefficients that satisfy the equation:

$$A\mathbf{x}_i = \lambda_i \mathbf{x}_i$$

for particular states called x_i , called the eigenvectors.

A solution to the system can be written as the combination of eigen vectors:

$$\mathbf{x}(t) = \mathbf{x}_1 e^{\lambda_1 t} + \mathbf{x}_2 e^{\lambda_2 t} + \dots + \mathbf{x}_n e^{\lambda_n t}$$

In this case, the system

$$\dot{x} = Ax$$

is said to be stable if the eigen-values of A are less than θ .

We solve for eigen values by noting:

$$(A - \lambda I)\mathbf{x} = 0$$

For this to hold true,

$$det(A - \lambda I) = 0$$

Example:

$$A = \left[\begin{array}{cc} 3 & 6 \\ 1 & 4 \end{array} \right].$$

$$A - \lambda I = \begin{bmatrix} 3 - \lambda & 6 \\ 1 & 4 - \lambda \end{bmatrix}$$
$$\det(A - \lambda I) = (3 - \lambda)(4 - \lambda) - 6$$
$$= \lambda^2 - 7\lambda + 6$$
$$= (\lambda - 6)(\lambda - 1)$$

Therefore $\lambda_1 = 6$, $\lambda_2 = 1$ The system is not stable!

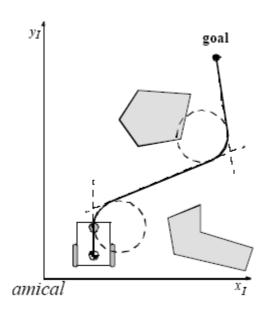
Summary:

• If our robot behaves like a system of the form e = Ae, where the eigen values of A are negative and e represents the difference between desired and actual states, the system will move to our desired state!

Point Tracking

- 1. P Control
- 2. Linear Systems
- 3. Motion Control
- 4. Reachable Space

- Goal is to follow a trajectory from an initial state to some desired goal location.
- Several approaches
 - Could construct a global trajectory first, then track points on the trajectory locally

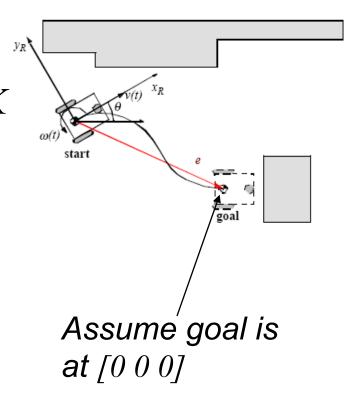


If we define the error to be in the robot frame:

$$e(t) = [xy\theta]^T$$

Goal is to find gain matrix K such that control of v(t) and w(t) will drive the error e(t) to zero.

$$\begin{vmatrix} v(t) \\ w(t) \end{vmatrix} = Ke(t)$$



Recall our forward kinematics

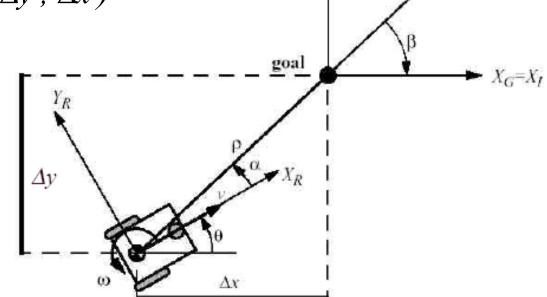
$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 \\ \sin\theta & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix}$$

We use the coordinate transformation

$$\rho = \sqrt{\Delta x^2 + \Delta y^2}$$

$$\alpha = -\theta + atan2(\Delta y, \Delta x)$$

$$\beta = -\theta - \alpha$$



 $AY_G = Y_I$

 Now we define the problem as driving the robot to goal

$$\begin{pmatrix} \rho \\ \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

 We know this will happen if the dynamics of the system obey

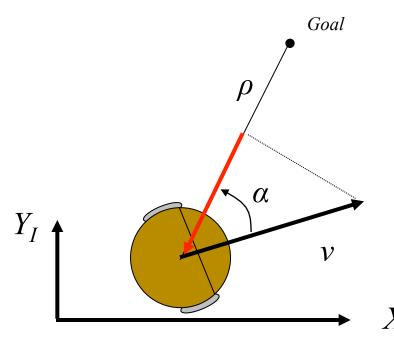
$$egin{pmatrix} oldsymbol{\dot{\rho}} \ oldsymbol{\dot{\alpha}} \ oldsymbol{\dot{\beta}} \end{pmatrix} = A egin{pmatrix}
ho \ lpha \ eta \end{pmatrix}$$

Where *A* is a 3x3 matrix with eigen values less than 0.

 Using the coordinate transformation, calculate the new kinematics:

$$\stackrel{\bullet}{\rho} = projection of v on \rho$$

$$= -v \cos(\alpha)$$

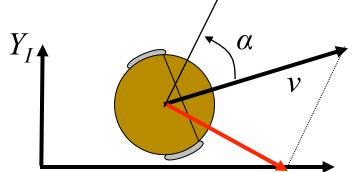


 Using the coordinate transformation, calculate the new kinematics:

$$\rho \vec{\beta} = \text{projection of } v \text{ perpendicular to } \rho$$

$$= -v \sin(\alpha)$$

$$\vec{\beta} = -v \sin(\alpha) / \rho$$



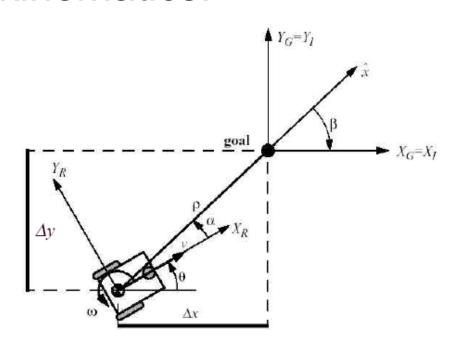
 Using the coordinate transformation, calculate the new kinematics:

$$\alpha = -\beta - \theta$$

$$\alpha = -\beta - \theta$$

$$\alpha = -\beta - \theta$$

$$\alpha = v \sin(\alpha)/\rho - w$$



In matrix from:

$$\begin{bmatrix} \stackrel{\bullet}{\rho} \\ \stackrel{\bullet}{\alpha} \\ \stackrel{\bullet}{\beta} \end{bmatrix} = \begin{bmatrix} -\cos\alpha & 0 \\ \sin\alpha/\rho & -1 \\ -\sin\alpha/\rho & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} \quad \text{for } \alpha \text{ within } (-\pi/2, \pi/2]$$

Let's try the control law:

$$v = k_{\rho} \rho$$
 $w = k_{\alpha} \alpha + k_{\beta} \beta$

■ Note that this is a form of P control, and if ρ , α , β all go to zero, then v and w will go to zero.

- To analyze controller, substitute control law into kinematics and linearize:
 - For small x, $cos(x) \approx 1$ and $sin(x) \approx x$

This is in the form...

$$e = A e$$

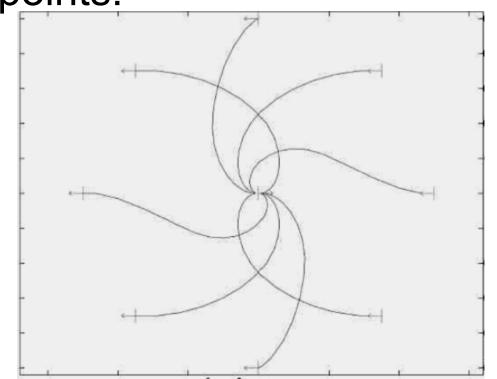
- Check for stability:
 - Take the determinant of A and solving for eigen values leads to:

$$(\lambda + k_{\rho}) (\lambda^2 + \lambda (k_{\alpha} - k_{\rho}) - k_{\rho} k_{\beta}) = 0$$

Thus the system will be stable if:

$$k_{\rho} > 0$$
 $k_{\beta} < 0$ $k_{\alpha} - k_{\rho} > 0$

Testing this control law with many different start points:



- The derived control law works well if $\alpha \in [-\pi/2, \pi/2]$
- For other cases where $abs(\alpha) > \pi/2$, we must modify the controller. So that the robot will move backwards to the desired position when required

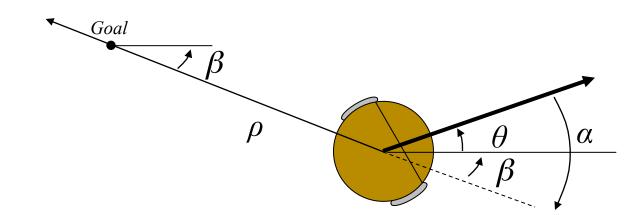
Backwards Example: Too long Goal

Backwards Method:

$$\rho = \sqrt{\Delta x^2 + \Delta y^2}$$

$$\alpha = -\theta + atan2(-\Delta y, -\Delta x)$$

$$\beta = -\theta - \alpha$$

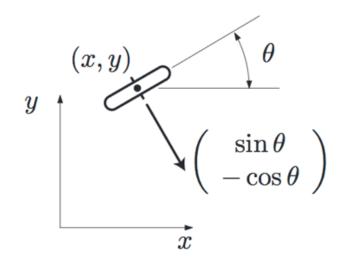


- Backwards Method Summary:
 - If $\alpha \in [-\pi/2, \pi/2]$
 - Use regular transform to polar coordinates
 - Use control law: $v = k_{\rho} \rho$ $w = k_{\alpha} \alpha + k_{\beta} \beta$
 - Else
 - ullet Redefine lpha as shown in backwards method
 - Use control law: $v = -k_{\rho}\rho$ $w = k_{\alpha}\alpha + k_{\beta}\beta$

Point Tracking

- 1. P Control
- 2. Linear Systems
- 3. Motion Control
- 4. Reachable Space

- Kinematic Constraints
 - One can calculate constraints on each individual wheel, then combine for constraints on entire robot.

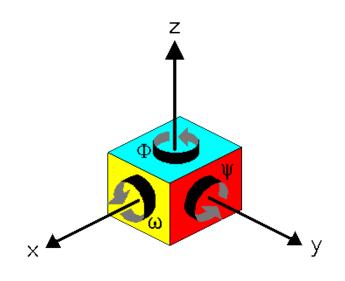


http://www.cs.cmu.edu/afs/cs/academic/class/16741-s07/www/lecture5.pdf

- Two main constraints:
 - 1. Rolling Constraint: no slipping!
 - 2. Sliding Constraint: no lateral movement!

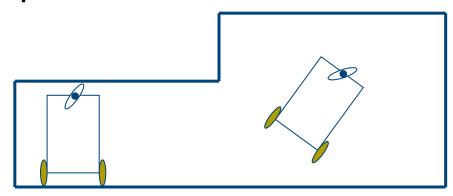
Degrees of Freedom:

- Def' n: The number of coordinates that it takes to uniquely specify the state of a system.
- In 3D, there are 6 degrees of freedom associated to the movement of a rigid body: 3 for its position, and 3 for its orientation.

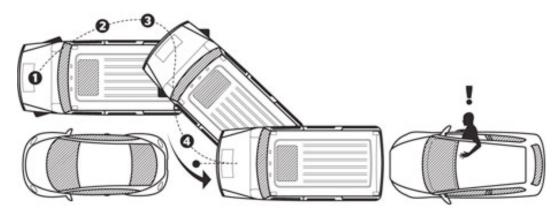


B J Stone, Univ. of Western Australia

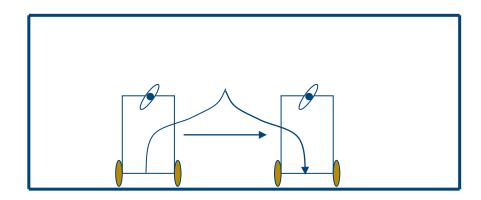
- Configurations in the Workspace
 - A robot's workspace is defined by the Degrees Of Freedom of the robot state.
 - Not all robot configurations within the workspace are reachable



- NonHolonomic Robots
 - A nonholonomic constraint is one that is not integrable.



- Paths in the Workspace
 - Path's in the workspace are limited, especially if the robot is nonholonomic



- Trajectories in the Workspace
 - A trajectory is a path parameterized by time.
 - Admissible paths don't always lead to admissible trajectories.

