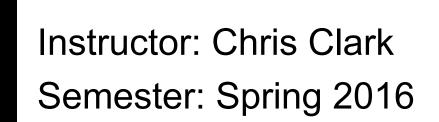
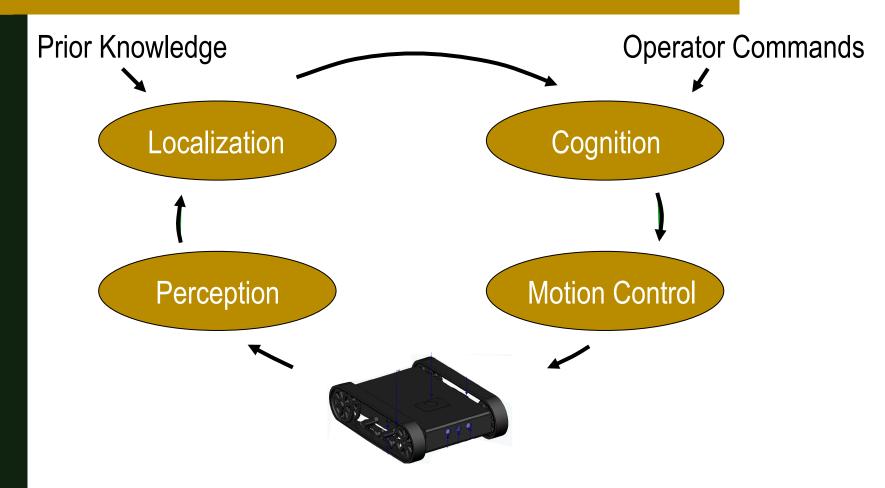


E160 – Lecture 2 Autonomous Robot Navigation



Figures courtesy of Siegwart & Nourbakhsh

Control Structures Planning Based Control



2

Locomotion & Robot Representations

1. Locomotion

- 1. Legged Locomotion
- 2. Snake Locomotion
- 3. Free-Floating Motion
- 4. Wheeled Locomotion
- 2. Continuous Representations
- 3. Forward Kinematics

Locomotion

- Locomotion is the act of moving from place to place.
- Locomotion relies on the physical interaction between the vehicle and its environment.
- Locomotion is concerned with the interaction forces, along with the mechanisms and actuators that generate them.

Locomotion - Issues

- Stability
 - Number of contact points
 - Center of gravity
 - Static versus
 Dynamic
 stabilization
 - Inclination of terrain

- Contact
 - Contact point or area
 - Angle of contact
 - Friction
- Environment
 - Structure
 - Medium

Locomotion in Nature

Type of motion		Resistance to motion	Basic kinematics of motion
Flow in a Channel		Hydrodynamic forces	Eddies Eddies
Crawl		Friction forces	
Sliding	N	Friction forces	Transverse vibration
- Running	S.	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Jumping	J.	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Walking	A	Gravitational forces	Rolling of a polygon (see figure 2.2)

Locomotion in Robots

- Many locomotion concepts are inspired by nature
- Most natural locomotion concepts are difficult to imitate technically
- Rolling, which is NOT found in nature, is most efficient

Locomotion via Climbing

Courtesy of T. Bretl

Locomotion via Hopping

NanoWalker Project Displacement

Laboratoire de NanoRobotique, École Polytechnique de Montréal (c) 2003

Courtesy of S. Martel

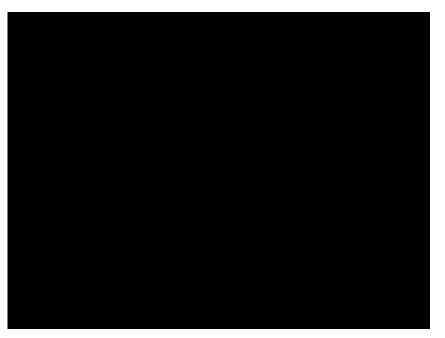
Locomotion via Sliding

Courtesy of G. Miller

Locomotion via Flying

GRASP Lab, Univ. of Pennsylvania

Locomotion via Self Reconfigurable Robots



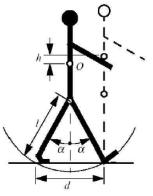
Courtesy of USC

Other types of motion

Courtesy of ARL, Stanford

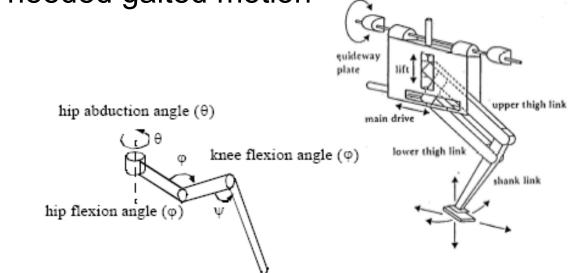
Courtesy of S. Martel

- Nature inspired.
- The movement of walking biped is close to rolling.



 Number of legs determines stability of locomotion

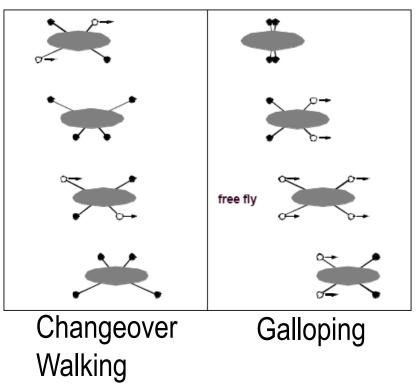
- Degrees of freedom per leg
 - Trade-off exists between complexity and stability
- Degrees of freedom per system
 - Too many, needed gaited motion



abduction-adduction

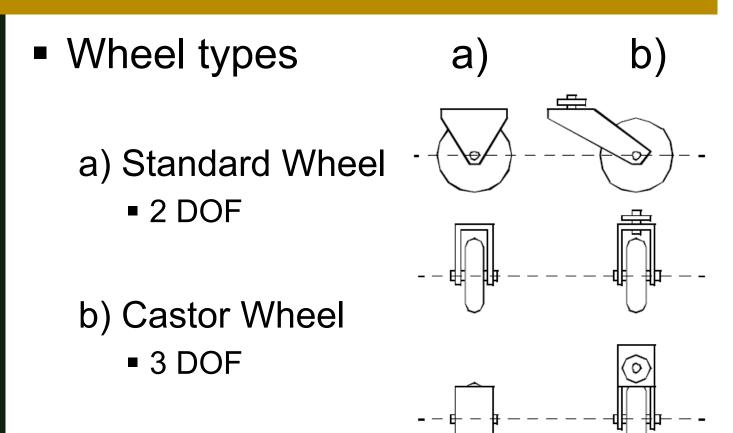
15

- Walking gaits
 - The gait is the repetitive sequence of leg movements to allow locomotion
 - The gait is characterized by the sequence of lift and release events of individual legs.



Courtesy of Pulstech

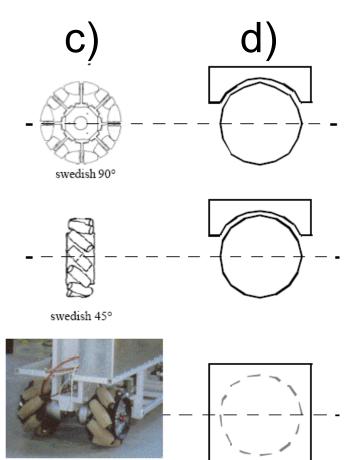
Wheeled Locomotion



18

Wheeled Locomotion

- c) Swedish Wheel3 DOF
- d) Spherical Wheel
 - Technically difficult



Wheeled Locomotion

- Wheel Arrangements
 - Three issues: Stability, Maneuverability and Controllability

- Stability is guaranteed with 3 wheels, improved with four.
- Tradeoff between Maneuverability and Controllability

Locomotion & Robot Representations

- 1. Locomotion
- 2. Continuous Representations
 - 1. Global Coordinate Frames
 - 2. Local Coordinate Frames
 - 3. Transformations
- 3. Forward Kinematics

Continuous Representations

- To control a robot we need to represent the robot's state with some quantifiable variables.
- Given the state description, we model the motion of the robot with differential equations:

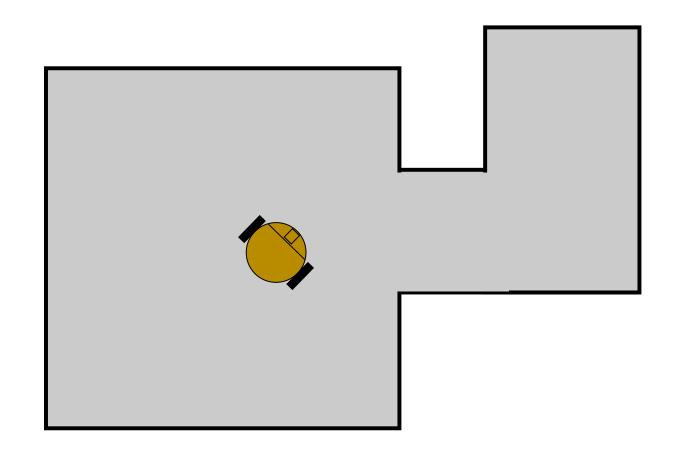
Kinematics

 Once we have the Kinematics equations, we can develop a control law that will bring a robot to the desired location.

Continuous Representations

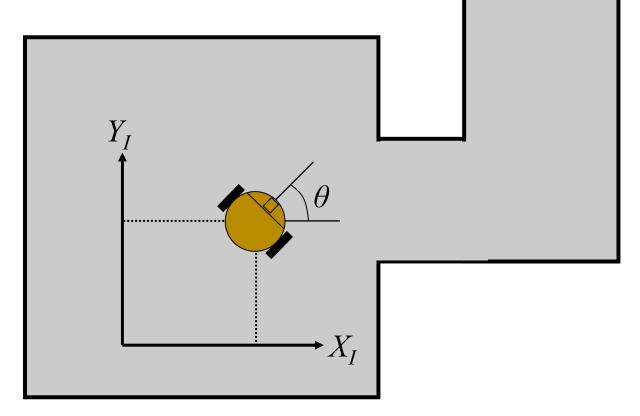
- To control a robot we need to represent the robot's state we use coordinate frames:
 - Global frame
 - Local frame

Global (Inertial) Coordinate frame



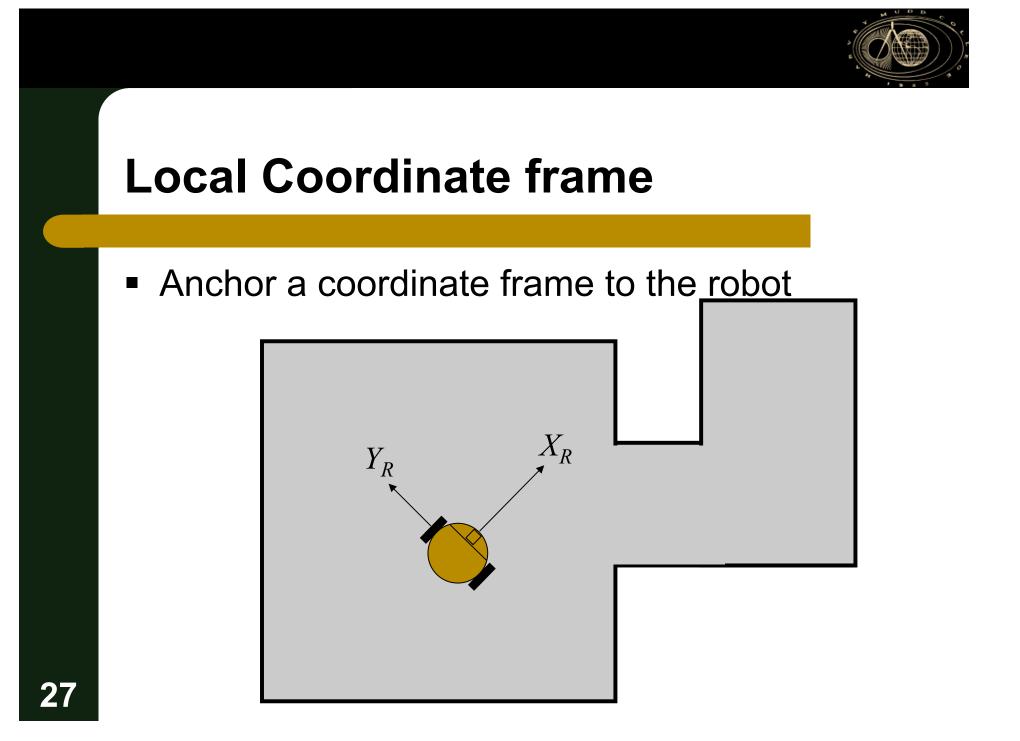
Global (Inertial) Coordinate frame

Anchor a coordinate frame to the <u>environment</u>



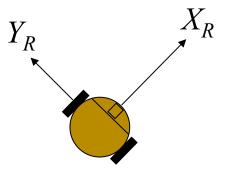
Global (Inertial) Coordinate frame

With this coordinate frame, we describe the robot state as:

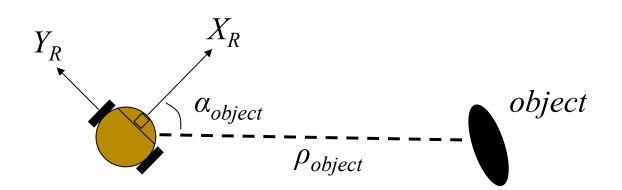


With this coordinate frame, we describe the robot state as:

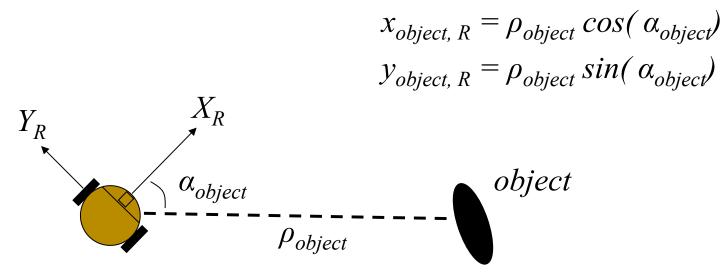
$$\xi_R = [x \ y \ \theta]_R = [0 \ 0 \ 0]$$



- The local frame is useful when considering taking measurements of environment objects.
 - Consider the detection of an wall using a range finder:



- The measurement is taken relative to the robot's local coordinate frame (ρ_{object} , α_{object})
- We can calculate the position of the measurement in local coordinate frames:



The local frame is also useful when considering velocity states:

$$d\xi_{R}/dt = [dx/dt \ dy/dt \ d\theta/dt]_{R}$$
$$= [x \ y \ \theta]_{R}$$
$$= \xi_{R}$$

 Often we know the velocities of the robot in the local coordinate frame:

$$\begin{array}{l} \mathbf{\dot{x}} = \mathbf{v} \\ \mathbf{\dot{y}} = \mathbf{0} \\ \mathbf{\dot{\theta}} = \mathbf{w} \end{array}$$

- We are also interested in the robot's velocities with respect to the global frame.
- To calculate these, we need to consider the transformation *R* between the two frames:

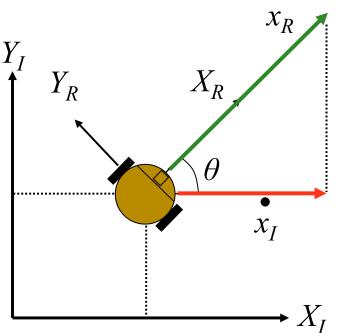
$$\xi_{R} = R(\theta)\xi_{I}$$

$$\xi_{I} = R^{-1}(\theta)\xi_{R}$$

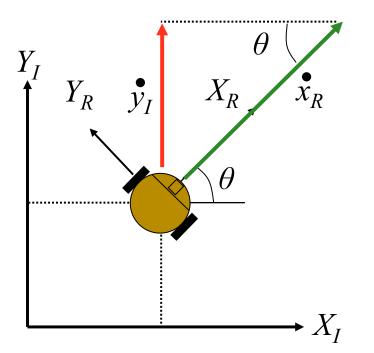
 Note that *R* is a function of theta, the relative angle between the two frames.

 Let's obtain the transformation matrix, starting with the X_I direction:

 $\mathbf{x}_{I} = \mathbf{x}_{R} \cos(\theta)$



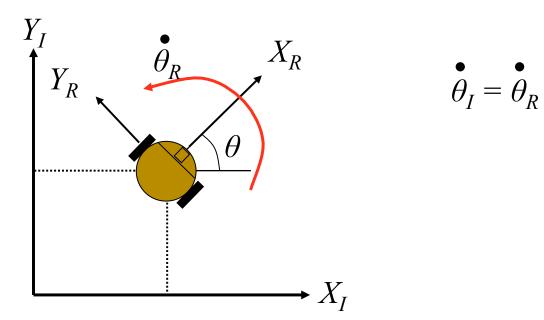
• Now the *Y_I* direction:



$$\dot{y}_I = \dot{x}_R \sin(\theta)$$

35

What about rotational velocity?



Lets put our equations in matrix form:

$$\begin{bmatrix} \mathbf{\dot{x}}_{I} \\ \mathbf{\dot{y}}_{I} \\ \mathbf{\dot{\theta}}_{I} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & 0 \\ \sin(\theta) & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{\dot{x}}_{R} \\ \mathbf{\dot{y}}_{R} \\ \mathbf{\dot{\theta}}_{R} \end{bmatrix}$$

Lets put our equations in matrix form:

$$\begin{bmatrix} \mathbf{x}_{I} \\ \mathbf{y}_{I} \\ \mathbf{\theta}_{I} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & 0 \\ \sin(\theta) & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{y}_{R} \\ \mathbf{\theta}_{R} \end{bmatrix}$$

$$\mathbf{\xi}_{I} \qquad R(\theta)^{-1} \qquad \mathbf{\xi}_{R}$$

• Or we can rewrite:

$$\dot{\xi}_{I} = \begin{pmatrix} \cos(\theta) & 0 \\ \sin(\theta) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix}$$

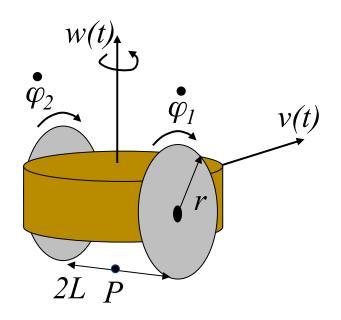
Locomotion & Robot Representations

- 1. Locomotion
- 2. Continuous Representations
- 3. Forward Kinematics

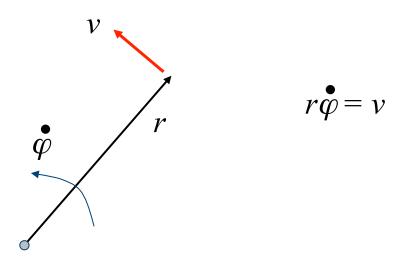
40

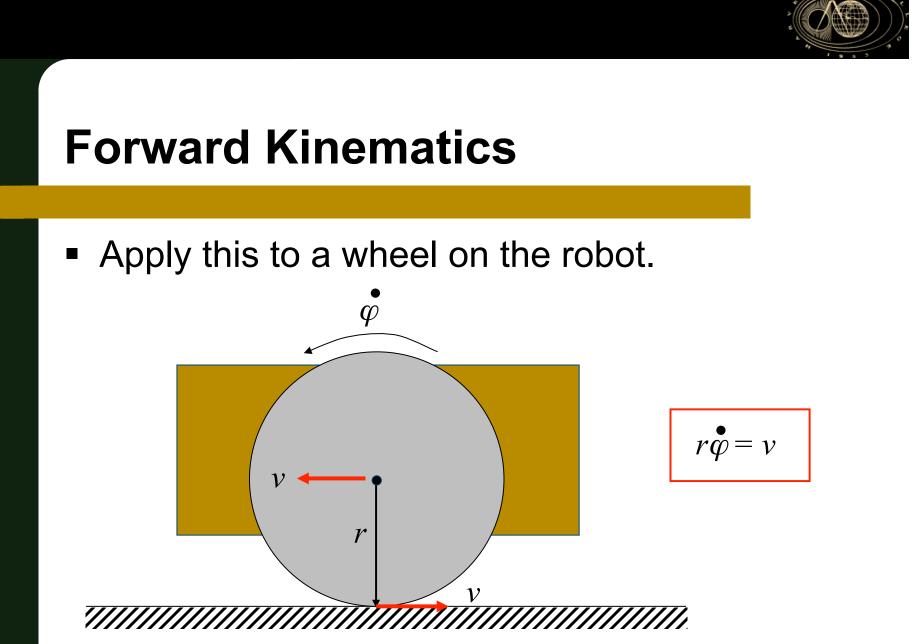
Kinematics

- The transformations we just defined form the basis of our forward Kinematics
 - The Kinematics equations should model how velocities in the global frame $\dot{\xi}_1$, are a function of wheel speed inputs $\dot{\varphi}_1$ and $\dot{\varphi}_2$.

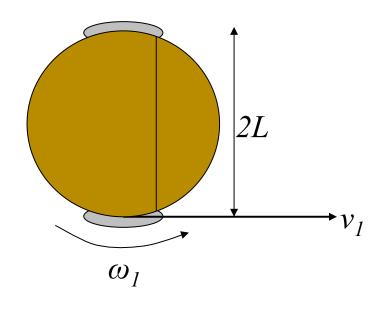


 Before we continue, we need to understand the relation between rotational velocity and forward velocity.





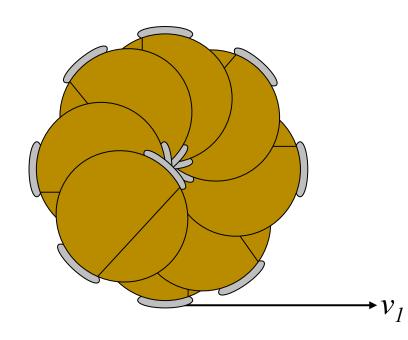
 Apply the same equation to a top view of the robot, assuming only wheel 1 is rotating.



$$v_1 = 2L\omega_1$$

45

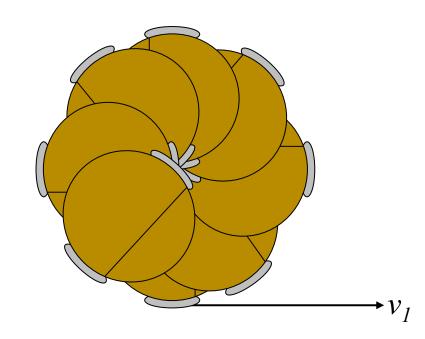
- Lets look in more detail:
 - If the left wheel has velocity 0, and right wheel has velocity v, the robot will spin with the left wheel acting as the center of rotation.



- There is no doubt that the wheel velocity induces a rotational velocity ω₁.
- The right wheel travels a distance $2\pi(2L)$ in 1 rotation.
- To make *1* full circle, it takes $2\pi(2L)/v_1$ seconds.
- The rotational velocity is then $(2\pi rad) / (2\pi (2L)/v_1 \text{ seconds})$

So the rotational velocity induced by the right wheel is:

$$\omega_1 = v_1/2L \quad rad/s$$



 Similarly, the rotational velocity induced by the left wheel is:

 $\omega_2 = -v_2/2L$ rad/s

 Note the negative sign because forward wheel velocity induces a negative rotational velocity on the robot.

Now, substitute velocities v₁ and v₂ calculated from wheel speeds (slide 44) into the rotational velocity equations (slides 46, 47).

$$\omega_1 = \frac{r\varphi_1}{2L}$$
$$\omega_2 = \frac{-r\varphi_2}{2L}$$

 Now, the rotational velocities can be calculated by summing the components of velocities from each wheel:

$$w(t) = \omega_1 + \omega_2$$

The forward velocity is the sum of the two components, (i.e. average of 2 velocities) again using the same equation from slide 44:

$$v(t) = L(\omega_1 - \omega_2)$$

Recall:

$$\begin{bmatrix} \mathbf{x}_{I} \\ \mathbf{y}_{I} \\ \mathbf{\theta}_{I} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & 0 \\ \sin(\theta) & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{\xi}_{I} \qquad \mathbf{R}(\theta)^{-1} \qquad \mathbf{\xi}_{R}^{\mathbf{\xi}}$$

51

• The resulting kinematics equation is:

$$\begin{split} \boldsymbol{\xi}_{I} &= R(\boldsymbol{\theta})^{-1} \left(\frac{r \boldsymbol{\phi}_{I}}{2} + \frac{r \boldsymbol{\phi}_{2}}{2} \right) \\ & \boldsymbol{\theta}_{I} \\ & \boldsymbol{\theta}_{I} \\ \frac{r \boldsymbol{\phi}_{I}}{2L} - \frac{r \boldsymbol{\phi}_{2}}{2L} \end{split}$$

- We now know how to calculate how wheel speeds affect the robot velocities in the global coordinate frame.
- This will be useful when we want to control the robot to track points (i.e. move to desired locations in the global coordinate frame by controlling wheel speeds).