
E160 – Autonomous Robot Navigation
Lab 5

Probabilistic Road Map (PRM)
Motion Planning

INTRODUCTION
Given a robot’s location in a known environment, a motion planning algorithm can be
used to construct a collision-free trajectory that connects a start configuration to a goal
configuration. Then, the robot can follow the trajectory to safely arrive at the goal
location.

In this lab, you will implement a single-query Probabilistic Road Map (PRM) motion
planning algorithm. At a high level, the algorithm generates a randomly expanding
roadmap, consisting of nodes and edges to connect the start and goal configurations.
More specifically, the algorithm roots the road map with a node at the start
configuration, then randomly expands the road map by adding new edges and nodes
until one of the new nodes has a collision-free edge connecting it to the goal
configuration.

BACKGROUND
An example single-query PRM algorithm is:

1. Add start configuration cstart to R(N,E)
2. Loop
3. Randomly Select New Node c to expand
4. Randomly Generate new Node c’ from c
5. If edge e from c to c’ is collision-free
6. Add (c’, e) to R
7. If c’ belongs to endgame region, return path
8. Return if stopping criteria is met

The key steps are step 3, 4 and 7. To save time, Kindel et. al.’s grid cell based weighted
sampling scheme has been coded for you to help in step 3. For step 5 and 7, a collision-
checking algorithm has been coded for you.

NOTE: For debugging the motion planner, the estimated states are set to exactly equal
the actual states in simulator mode (e.g. self.state_est = self.state_odo).
This way you won’t deal with any residual localization problems.

EXPERIMENTS
Download the most recent version of the base code for lab 5. The main control loop
update() in E160_robot.py now contains the following functions:

def update(self, deltaT):
 # get sensor measurements
 self.encoder_measurements, self.range_measurements =

self.update_sensor_measurements(deltaT)

 # update odometry
 delta_s, delta_theta =

self.update_odometry(self.encoder_measurements)

 # update simulated real position, find ground truth for simulation
 self.state_odo = self.localize(self.state_odo, delta_s, delta_theta,

self.range_measurements)

 # localize with odometry
 self.state_est = self.state_odo

 # to out put the true location for display purposes only.
 self.state_draw = self.state_odo

 # call motion planner
 self.motion_plan()
 self.track_trajectory()

 # determine new control signals
 self.R, self.L = self.update_control(self.range_measurements)

 # send the control measurements to the robot
 self.send_control(self.R, self.L, deltaT)

Note that the self.localize() function return the location of the robot in simulation
mode. Also, your trajectory tracking code isn’t required (I have provided one) but your
point tracking code is required. **Copy all necessary code for these functions from
the previous lab 4 to your new lab 5 code. **

The robot mode and control mode in E160_environment are set to:
 self.robot_mode = "SIMULATION MODE”
 self.control_mode = "AUTONOMOUS CONTROL MODE"

In "AUTONOMOUS CONTROL MODE", clicking a point on the gui will update the
self.state_des in the robot class, and the self.motion_plan()will build
self.trajectory with a sequence of points (E160_state) for the robot to follow to its
destination. A new variable self.state_curr_des is introduced to indicate the current
point that the robot is tracking to, while self.state_des is now used to indicate the final
destination.

Once a trajectory is constructed by the self.motion_plan function, the
self.track_trajectory() function will set the desired points
(self.state_curr_dest) to be tracked by the point tracker to be those nodes of the
newly constructed trajectory. Note that the self.tracj_trajectory() will iterate
through the self.trajectory list of state for the robot to follow.

Before you begin, find and understand what is happenining in the functrion
motion_plan(self) found in the file E160_robot.py. This is function is called from
the robots main loop and will call the motion planner when required.

For this lab, the code you will modify is located in self.E160_MP.py:

1. Create the start and goal nodes
The call from motion_plan(self)in E160_robot.py is what initiates the motion
planning algorithm. Within this function, use the constructor Node(x, y, parent,
children, index) to set the variable self.start_node. Set the nodeIndex 0, and
parent to None. These are used later when constructing the trajectory from the PRM.

Use the self.addNode function to add the start node to the PRM.

2. Random Node Selection
The update_plan function calls the self.MotionPlanner function which
contains the main PRM code. Within this function a while loop has been created for
you that iterates over possible node expansions. This loop will terminate if the
maximum number of iterations is exceeded, or a path was found, (i.e. the PRM
successfully connected to the goal node).

Within the while loop, the first step is the random selection of a node to expand from.
The Kindel et. al.’s grid cell based weighted sampling scheme has been coded for
you. Called the self.select_expansion_node()function and it will return a random
node for you to expand on!	

3. Node Expansion
For the node expansion, we will use straight line segments. That is, all edges in the
PRM will be straight, thereby ignoring dynamic or kinematic constraints.

First, randomly select a distance and orientation. You can play with the ranges of
these random numbers later and see how they affect planner performance.

Figure 1: Random expansion to create a new node

Use the distance and orientation, along with the position of the parent node
(expansion_node.x, expansion_node.y) to determine the location of the new node
new_x and new_y. Using the Node constructor, create the newNode with this position.
Set the nodeIndex to be self.num_nodes, and the parent to be the expansion_node.

4. Add new node to PRM
Create an if statement that calls self.check_collision(node1, node2,

tolerance) to determine if the edge connecting the new_node to its parent is
collision-free. The variable tolerance is for the allowable distance between the
center of the robot and the wall, (perhaps self.robot_radius).

If no collision was found, add the new_Node to the PRM using self.addNode(), and
append the new_node to the children of the expansion_node. This is for the
graphing of the PRM!

5. Check for connection to goal
After adding the new_node to the PRM, check if the new node connects to the goal
node using the collision checker again. If there is no collision between new_node and
goal_node, set the goal_node.parent to be the new_node, and append
goal_node.parent to the children of new_node. Finally, add the goal_node to the
PRM and set the path_found flag to be true. Setting this flag will terminate the while
loop.

orientation

distance

randExpansionNode

newNode

6. Optimize Trajectory Tracker (Optional)
At this point, test your planner on many start/goal locations. You should see the
trajectory connect your estimated position with the goal point on the screen. If the
screen fills up with white lines, your planner didn’t find a solution (maybe your goal
destination is on a wall!) Once the trajectory is constructed, the robot will track each
node in the trajectory using the self.track_trajectory() function.

Also, feel free to make several plans and pick the shortest plan before following it.
Another idea is to iterate on the planned path and drop all nodes that have a
collision-free line connecting its parent to its child.

DELIVERABLES

1. DEMO!!!
You must demo your working code in simulation (only) to the instructor by midnight
on Sunday, April 29th. A live demo is preferred.

