

E160 – Autonomous Mobile Robots
Lab 4

Particle Filter Localization

INTRODUCTION
Determining a robots position in a global coordinate frame is one of the most important
and difficult problems to overcome in enabling mobile robots to navigate an environment
and carry out tasks autonomously. In lab 2, you used odometry for localization and saw
first hand how errors accumulate with distance travelled.

In this lab, you will implement a particle filter localization algorithm. At each iteration of
the algorithm, odometry is used to propagate the robot motion of every particle. Then
these particles are assigned weights based on how closely the current range sensor
measurements match with expected range measurements. The expected range
measurements are calculated using the propagated particle state and a map of the
environment. The particle distribution is then resampled based on the particle weights.

BACKGROUND
There are several steps to implement a particle filter localization algorithm, and this will
take quite a bit more time than previous labs. The algorithm is outlined in the slides for
Lecture #15. See Sebastian Thrun’s text Probabilistic Robotics for additional details.

For our code base, (new version for lab 4), the robots main control thread update
function in E160_robot.py looks like:

def update(self, deltaT):

 # get sensor measurements
 self.encoder_measurements, self.range_measurements =

self.update_sensor_measurements(deltaT)

 # update odometry
 delta_s, delta_theta = self.update_odometry(self.encoder_measurements)

 # update simulated real position, find ground truth for simulation
 self.state_odo = self.localize(self.state_sim, delta_s, delta_theta,

self.range_measurements)

 # localize with particle filter
 self.state_est = self.PF.LocalizeEstWithParticleFilter(

self.encodermeasurements,self.range_measurements)

 # to out put the true location for display purposes only.
 self.state_draw = self.state_odo

A few important notes here:

• The variable state_odo is set to be that produced from the odometry (using
either simulated or actual encoder measurements). This is only really useful for
simulator mode.

• The variable state_est is the estimated state will be calculated with the particle
Filter

• The variable state_draw is the state drawn on the GUI with the robot image.

A new addition to the code base is the file E160_PF.py. This contains all the particle
filter code. You will add most of your code (if not all of your code) here. To start, notice
how we have created a particle class at the bottom of the file:

class Particle:

def __init__(self, x, y, heading, weight):
 self.x = x
 self.y = y
 self.heading = heading
 self.weight = weight

 def __str__(self):
 return str(self.x) + " " + str(self.y) + " " + str(self.heading) + " " +

str(self.weight)

Each particle in the filter has an x, y, theta, and weight value. The key functions within
the E160_PF.py file for which you will have to add code include:

def InitializeParticles(self)

def LocalizeEstWithParticleFilter(self, encodermeasurements, sensor_readings)

def Propagate(self, encodermeasurements, i)

def CalculateParticleWeight(self, sensor_readings, walls, particle)

def GetEstimatedPos(self)

def FindMinWallDistance(self, particle, walls, sensorT)

def FindWallDistance(self, particle, wall, sensorT)

Make sure you can find these in your file, because you will be adding to them shortly.

CODING AND EXPERIMENTS
First, let’s get some geometry done:

1. Determine the distance to a wall
Using geometry, you need to calculate the distance to a wall using the laser range
sensor. You will need to modify the function FindWallDistance(self, particle,
wall, sensorT). The particle variable includes a robot x, y position and heading
with respect to the global coordinate frame. The variable sensorT is the angle of
direction of the range sensor mounted on the robot, with respect to the robot’s local
coordinate frame.

In this function, you must calculate the expected range measurement d from a robot
sensor to a wall. The wall is defined by a line segment with two endpoints [X1,
Y1, X2, Y2] as defined at the top of E160_environment.py.

Figure 1: Calculating the distance to a wall segment

An easy way to calculate d is to calculate the point of intersection between the line
segment and the ray cast by the range sensor transmission signal. This assumes
the sensor transmits a linear signal with no energy dissipation.

Next calculate the distance between the point of intersection and the robot. Make
sure that a point of intersection actually exists.

x, y

t

d

Wall segment
of interest

X1 Y1 X2 Y2

heading

2. Determine the distance to closest wall
The function FindMinWallDistance(self, particle, walls, sensor) will
return the shortest measurement that a range sensor should receive given the
environment map. Within this function, loop through all wall segments to find the
closest segment by calling the function FindWallDistance.

This function will be called from two other functions. First, the robot simulator in the
update_sensor_measurements function of E160_robot.py will call
FindMinWallDistance to determine what the sensor measurements would be,
given the current state and the environment. Second, the function will be used by
your particle filter to determine expected measurements for particular particle
locations.

Drive the robot around the simulated environment to ensure that the range
measurements make sense, (top left of GUI).

3. Create an initial set of particles
When the object Robot is constructed, it calls a function InitializeParticles().
This function will iterate on all particles and initialize their states using either of the
two functions:

 self.SetRandomStartPos(i)
 #self.SetKnownStartPos(i)

Within SetRandomStartPos, set the position of particle i to be some random location
within the boundaries of the environment. Feel free to make use of the
random.random() function, and variables like self.map_minX, self.map_maxX that
are set in the E160_PF constructor. Note that in E160_PF the number of particles is
defined as numParticles.

4. Propagate particles
The prediction step within the particle filter is accomplished by propagating particles
forward based on odometry. Within LocalizeEstWithParticleFilter, create a loop
that iterates on all particles.

At each iteration of the loop, call the Propogate, function to update particle i’s
position and heading using odometry along with some randomness added to EACH
wheel’s distance travelled, to determine the new predicted state of the particle. Be
sure to store this predicted state in self.particles[i]. Then, for each iteration
of the loop, call the function CalculateWeight to set self.particles[i].weight.

5. Weight the particles
Within the function CalculateWeight, compare any of the range measurements in
sensor_readings to expected range measurements for the particle’s state
within the map. You will use the function FindMinWallDistance that you created
before. Use this comparison between range measurements and expected range
measurements to calculate the weight that is returned at the end of the
CalculateWeight function.

6. Resample the particles
Once the set of propagated particles have been created and weighted, you can
create the corrected set of particles particles. This should be done after the
prediction step in LocalizeEstWithParticleFilter. This resampling can be
accomplished by randomly selecting particles from the predicted particles with
increased likelihood of selection given to those particles with high weights.

7. Calculate the state estimate
At the end of LocalizeEstWithParticleFilter, calculate and return the state
estimate using a function self.GetEstimatedPos() that you must write. Within
self.GetEstimatedPos(), you must take the average of all particle states to
calculate the estimate.

8. Known start position simulations
Use the InitializeParticles() function to initialize all particles at the known start
position at [0 0 0]. Drive the robot around the simulated environment. Tune your
Particle Filter parameters so that the estimated state matches the actual robot state.

9. Unknown start position simulations
Use the InitializeParticles() function to initialize all particles at random start
positions. Drive the robot around the simulated environment. Tune your Particle
Filter parameters so that the estimated state converges to the actual robot state.

10. Hardware experiment
Develop a maze using hardware experiment that demonstrates how well your
particle filter localization algorithm works. You can use whatever configuration of
walls you wish, along with your choice of paths to follow.

DELIVERABLES

1. Demonstration
Before the end of the final day of this lab, Monday March 26th at midnight, you must
demonstrate to the TA or instructor that your PF localization algorithm is working
properly. In both simulation and hardware mode, the display window should show
the actual robot states and state estimates match.

Part of your grade will be based on performance: How well do state estimates match
actual robot position? How stable is the controller when using the PF state estimates
for feedback? Is the kidnapped robot problem solved?

2. Submissions
In a 5-10 page report, (similar format to lab 3), present your methods for PF
localization. Discuss any decisions you made in your algorithm design, E.g. your
sampling strategy, how you propagated states, what sensors you used for weight
calculations, how you picked your environment, etc. Provide plots and data tables
that demonstrate the performance of your algorithm in simulator mode. The report is
due via email or hardcopy to the instructor by midnight on Monday. April 2nd.

You must demonstrate your PF in simulation and on the real robot by Monday March
26th at midnight.

