
E160 Lab 03

Point Tracking Spring 2018

1. INTRODUCTION
Robots often need to move to a point with a desired orientation. This can be difficult when
the robot has nonholonomic constraints. The robot cannot simply move laterally, making
it difficult to come up with a controller using intuition.

The goal of this lab is to get students to implement a closed loop controller that will drive
the robot to any desired state (position and orientation). Odometry will be the sole method
used for estimating the robot’s state (i.e. localization). This method of localization will be
replaced in the next lab.

2. BACKGROUND
As shown in class, a controller has been developed based on the following coordinate
transformation:

𝜌 = √Δ𝑥2 + Δ𝑦2
𝛼 = −𝜃 + 𝑎𝑡𝑎𝑛2(Δ𝑦, Δ𝑥)

𝛽 = −𝜃 − 𝛼

Once the new variables have been calculated, desired forward velocity v and desired
rotational velocity w can be calculated. Note, control gains are defined at the top of
E160_robot.py, but they may not be optimal values.

𝑣 = 𝑘𝜌𝜌

𝑤 = 𝑘𝛼𝛼 + 𝑘𝛽𝛽

Using v and w, we can determine the desired wheel velocities 𝜑̇1 and 𝜑̇2. The following
equations were derived and are used.

𝜔1 =
𝑟𝜑̇1

2𝐿

𝜔2 = −
𝑟𝜑̇2

2𝐿

𝑤 = 𝜔1 + 𝜔2

𝑣 = 𝐿(𝜔1 −𝜔2)

Recall that this controller works well if the goal point is in front of the robot, that is if α lies
between –π/2 and +π/2.

However if the goal is behind the robot, then modifications to the controller are required
to give shorter more direct paths involving the robot moving in reverse. That is, we first
redefine the transformation as:

𝜌 = √Δ𝑥2 + Δ𝑦2
𝛼 = −𝜃 + 𝑎𝑡𝑎𝑛2(−Δ𝑦,−Δ𝑥)

𝛽 = −𝜃 − 𝛼

We also redefine the control law to have the robot work in reverse.

𝑣 = −𝑘𝜌𝜌

𝑤 = 𝑘𝛼𝛼 + 𝑘𝛽𝛽

When implementing this controller, make sure your robot never exceeds the maximum
allowable velocity of self.max_velocity = 0.05 m/s, and that controller gains must

satisfy the necessary conditions for stability.

3. EXPERIMENTS
Use the most recent version of the base code from the course website. Note, you will
have to copy and paste your odometry over from lab 2. All coding for steps a) through f)
will occur within the function point_tracker_control(). Note that this function will be

called from update_control() at each iteration of the control loop. Also note that

clicking the “Track Point” button on the GUI will set the robot’s desired x, y, theta values
stored in state_des to be the values in the three text boxes on the upper left part of the

GUI screen. Clicking the Track Point button also resets the point_tracked variable to

be False.

a) Transformation to a new coordinate system
Using the robot state estimate state_est, and the desired state state_des,

calculate the position of the robot Δx, Δy relative to the goal position.

Now use the equations above to calculate the state variables pho, alpha, beta in

the new coordinate system. Remember to check if the goal is behind the robot and
recalculate the variables if necessary.

It is often a good idea to make sure that ALL angles lie within –π and π. We have
created a function called angle_wrap to help with this.

b) Calculate Desired Wheel Velocities
Now that the transformation is complete, implement the control law to determine the
desired velocities v and w, respectively represented by variables desiredV and

desiredW in your code. You can experiment with different gain values Kpho, Kalpha,

and Kbeta. Remember to reverse direction if the goal is behind the robot.

From desired robot velocities v and w, you can calculate the desired wheel velocities
desiredRotRateL and desiredRotRateR. You may need some of the equations above.

Keep good track of your units. It may be helpful to understand there are variables
encoder_resulution and encoder_per_sec_to_rad_per_sec defined and

set for you.

You can check if the robot is close enough to the desired state and zero the desired
wheel velocities.

c) Track Desired Positions
Run the application in Simulation mode and set the desired state to be [0.75 0 0].
Click the “Track Point” button. The robot should move forward 0.75 m. Now try
tracking the point [0 0 0]. The robot should return to the origin.

Keep trying new points to track, making sure the robot always moves to the desired
locations. At this point the robot will always end with orientation 0 degrees.

d) Track desired positions and orientations

To make the robot track desired orientations, the state variable  must be modified to

include the desired orientation 𝜃𝑑𝑒𝑠. Simply adding 𝜃𝑑𝑒𝑠 to  will force the robot to track
the desired orientation, (See figure below).

Old Definition: New Definition

Now test the controller for many desired position/orientation combinations in
Simulation mode.

e) Velocity Limits
Before having the point_tracker_control() function return variables

desiredWheelSpeedR and desiredWheelSpeedL, be sure they travel no faster

than max_velocity m/s. Double check your point tracking code still works after you

implement this.

f) Hardware testing
Set your robot in hardware robot and make sure your point tracker still works. You
may notice that as the robot gets close to the desired state, it may jitter. To
accommodate this, implement a case check that sets point_tracked to be true if the
robot is “close enough” to the desired state. Also, it helps to use a separate controller
once the robot is within epsilon meters of the desired position. The second controller
should simply robot on the spot to track the desired position using P control.

θdesired

g) Tracking trajectories
Using the point tracker you just developed, implement a path tracker that enables the
robot to autonomously follow a hard coded path, (this may be useful when your motion
planner autonomously constructs a collision-free trajectory).

Hard code a trajectory that includes at minimum straight line path segments.

Note that you will need to create your own function that iteratively calls the point_track
function.

4. DELIVERABLES

a) Demonstration
Before the end of the final day of this lab, you must demonstrate to the Instructor that
your point tracker (not path tracker) is working properly. In both simulation and
hardware mode, the 2D graphics window should show the robot and estimate moving
towards desired goal states. Videos are not acceptable for the simulation part of the
demo, the instructor will drive the robot in simulation and try to break it!

Part of your grade will be based on performance: How stable is the controller on the
real robot, how close does it come to desired states, etc. Demos are due by 4:00pm
Sunday, March 4th.

b) Submissions
In a 5-10 page report, present your methods and results for both point tracking and
path tracking. Be sure to include the following sections: abstract, introduction,
background, problem definition, control design, results, conclusion. Performance
plots, indicating point tracking data that illustrates the path taken as well as tracking
error are required.

Note, all lab documents in this class will follow the template found at:
http://www.ieee.org/conferences_events/conferences/publishing/templates.html

The report is due 4:00 pm, Sunday, March 4th.

