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Abstract— In this lab, motion estimation was implemented on 

the Jaguar robot by using a kinematic model which translates 

odometry measurements in the local frame to transformations in 

the global frame. The error of this model was characterized 

through a series of experiments performed in the lab and on 

concrete and grass. On all terrains, the Jaguar’s estimated 

position and orientation was compared with its actual measured 

position. Indoors, odometry-determined rotation was found to 

have a systematic error of 0.13 radians per radian predicted. In 

addition, 95% of random error during a rotation of 20π was 

determined to be within ±5.88 radians. The Jaguar was found to 

move forward similarly on grass, concrete, and in the lab, with a 

systematic error of about +0.10m for every 1 meter the Jaguar 

calculated it traveled forward. This systematic error was used to 

determine an effective radius of the Jaguar, which can be 

implemented in future kinematic models to reduce systematic 

error. 

Keywords—odometry; motion estimation; kinematic modeling; 

Jaguar robot; error characterization; drift. 

I. INTRODUCTION 

Mobile robots frequently use odometry to estimate their 
motion in the global coordinate frame. Since there is no easy 
method to measure a mobile robot’s position instantaneously, 
one must integrate the local motion of the robot over time. 
However, the accumulated inaccuracies of motion 
estimation—systematic and random error—makes determining 
the robot’s position a very difficult task. As a consequence, the 
errors involved in motion estimation play an important role in 
mobile robotics. The goal of this lab is to characterize the error 
involved with using odometry for motion estimation. This error 
characterization will be useful in localizing and navigating the 
robot in later labs. 

A direct illustration of the issue of error in odometry can be 
seen in Fig. 1. An LED flashing at 2 Hz was attached to the 
Jaguar, while a 6 second exposure photo captured its trajectory.  

 

Fig. 1. Trajectory of the Jaguar over 6 seconds, showing the accumulative 

error. Each white dash represents a time duration of 0.25s, and each grid line 

represents approximately 5cm. 

The dashed white line is the robot’s trajectory, and the 
perspective grid and the green line were added in with 
Photoshop to show the robot’s motion estimation path. Notice 
the increasing error in the robot’s estimation. This is one of the 
errors we wish to characterize. 

A more dramatic representation of odometry error is shown 
in Fig. 2 below. This figure shows a 20 second exposure photo 
capturing the Jaguar’s trajectory as it accumulatively deviates 
from its estimated path (shown in white).  

 

Fig. 2. Trajectory of the Jaguar over 20 seconds exposure photo. Each dash 

represents 0.25 seconds. The white line down the center is the robot’s 
estimated path. 
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Although the experiments Fig. 1 and Fig. 2 were not 
conducted rigorously, they demonstrate an absolute necessity 
for error characterization in mobile robotics odometry. This 
paper will establish experiments to help characterize this error 
and understand when and how to be certain about the Jaguar’s 
motion estimation. 

II. BACKGROUND 

The Jaguar is a mobile all-terrain navigation robotic 
platform developed by Dr Robot Inc. It integrates an outdoor 
GPS, a 9 DOF IMU, a 270° laser range scanner and a low light 
camera. These sensors can be used to implement autonomous 
control of the robot. It uses continuous rubber tracks to move. 
The Jaguar weighs less than 14kg, is compact, rugged and 
weather resistant. 

To use the Jaguar with autonomous control, it needs to 
know where it is. This can be accomplished by using wheel 
odometry. Odometry on the Jaguar is estimated by counting 
wheel revolutions with an optical encoder. By using the wheel 
revolutions to calculate the change in the robot’s local frame, 
we can determine the change of the robot in its global frame.  

An optical encoder works by using a pair of photoemitter 
and photodetector to measure the revolution of the wheel. The 
number of encoder counts corresponds to the angular 
displacement of the encoder wheel. By processing the number 
of encoder counts, we can determine the rotation of the wheel 
over a specific time interval, and from that, determine the 
distance each wheel travelled. Further, once the distance each 
wheel travels is known, a kinematic model can be used to 
describe its global translation and rotation. 

III. KINEMATIC MODEL 

To model the kinematics of the Jaguar, a simple wheeled 
robot is considered. While the rubber tracks of the Jaguar are 
considerably different from idealized wheels, it was assumed 
that some effective radius of the Jaguar could be determined 
that would make the following kinematic model useful for 
odometry.  

Equations (3.1) and (3.2) show how the displacement of 
each wheel was determined, where Δsr and Δsl are shown in 
Fig. 3, Lwheel is the radius of a wheel, Δdr is the difference 
between the current and last encoder measurement, and Drev is 
the number of encoder pulses per wheel revolution.  

 2 r
r wheel

rev

d
s L

D



   (3.1) 
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Equations (3.3) and (3.4) describe how the overall change 
in displacement and angle can be determined from the changes 
in wheel displacement and the radius of the robot. Δsr, Δsl, and 
2Lrobot are shown in Fig. 3. The Jaguar’s effective radius Lrobot 

was experimentally estimated to be 0.28m ±0.01m by using a 
ruler. 
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Equations (3.5) and (3.6) describe how the global Δx and 
Δy components can be found from the total distance Δd 
traveled. Fig. 4 illustrates these components. The assumption 
was made that Δd ≈ Δs for small angles θ, as shown in Fig. 5.  

 cos( / 2)x s       (3.5) 

 sin( / 2)y s       (3.6) 

 

 
Fig. 3. A wheeled robot of length 2L with each wheel translating some 

distance Δs. [1] 

 
Fig. 4. The Δy and Δx components of displacement can be determined based 

on the total distance Δd traveled and the heading angle θ. [1] 

 

Fig. 5. For small θ, Δd ≈ Δs. [1] 

IV. CONTROL DESIGN 

The kinematic model described above was implemented to 
predict the position of the Jaguar based on odometry. The 
sensors and predictions are updated at 20 Hz in the 
control_loop in Fig. 6. 

 
void function control_loop() 

  update_encoder_measurements() 

  predict_motion() 

  update_global_position() 

  wait 50ms 

end 

Fig. 6. Psuedocode for the main control loop operated by the Jaguar. The 

loop currently runs at 20 Hz. 
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void function predict_motion() 

  for each wheel: 

    Δd = encoder_current – encoder_last 

    if rollover is detected:  

      correct for rollover in encoder 

    implement (3.1) or (3.2) //Δsl/r 

  implement (3.3) //Δθ 

  implement (3.4) //Δs 

end 

Fig. 7. Pseudocode for predict_motion(), which implements the kinematic 

model described in Section III. 

void function update_global_position() 

  implement (3.5) //Δx  

  implement (3.6) //Δy 

 

  global x += Δx 

  global y += Δy 

  global θ += Δθ  

     

  if θ ∉ [-π, π]:    
    map θ to -π to π 

end 

Fig. 8. Pseudocode for update_global_position, which localizes the Jaguar by 

integrating odometry measurements made by predict_motion() 

After updating the new encoder measurements, the control 
loop calls functions in Fig. 7 and Fig. 8 to calculate the robot’s 
predicted local motion, then and integrate the motion into its 
global position. The global variables x, y and θ refer to the 
global position of the Jaguar. 

V. METHOD 

Three sets of experiments were conducted: actual rotation 
vs. predicted rotation in the lab, actual translation vs. predicted 
translation in the lab, and actual translation vs. predicted 
translation outdoors on concrete and grass.  

 

Fig. 9. Jaguar heading measurement compass setup. 

A. Continuous Rotation (Indoor)  

An analog compass was aligned with the front of the Jaguar 
and an initial angle measurement was recorded. The compass 
was taped on a cardboard box approximately 0.5m above the 
robot in order to isolate the compass from any magnetic 
interference from the robot’s motors. The box was removed, 
and the Jaguar was instructed to rotate in place a set number of 
times based on odometry. The analog compass was 
repositioned as before and a final angle measurement was 
recorded. The actual rotation of the robot was found by taking 
the difference between this final angle measurement and the 
initial angle measurement, and was compared with the Jaguar’s 
calculated angle based on odometry. This test was repeated for 
rotations ranging from 1π to 20π with increments of 1π. The 
rotation of 20π was repeated 18 times so that random error 
distribution could be determined. The setup for this test is 
shown in Fig. 9. 

 

Fig. 10. Alignment of the Jaguar Robot to the coordinate frame. Center 

alignment (left) and side alignment (right). 

B. x and y Translation (Indoor) 

The Jaguar was aligned with a coordinate frame (made of 
blue tape on the floor). The alignment technique involved 
squaring a ruler to the front sides and center (illustrated in Fig. 
10) to ensure the robot began at the exact same location and 
orientation each time. The Jaguar is instructed to move forward 
for 1 or 2.5 meters. Its predicted x and y position based on 
odometry were recorded. The actual x and y position was 
measured using a meterstick aligned with the coordinate frame 
on the floor. The test was repeated for backwards motion.  

C. x Translation (Concrete) 

Tape was used to mark 1 meter increments on a concrete 
sidewalk next to a grassy area. The Jaguar was aligned with the 
sidewalk on the concrete and instructed to move forward for a 
distance ranging from 0.5 meters to 5 meters with 0.5 meter 
increments. The actual x distance travelled by the robot was 
measured using the tape marks and a meterstick. This was 
compared with the x distance predicted by the Jaguar using 
odometry. 
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Fig. 11. Alignment of Jaguar on concrete outdoors. 

VI. RESULTS AND DISCUSSION 

The results of the three experiments are presented in this 
section: the systematic and random error of indoor rotation, 
indoor x and y displacement, and outdoor x displacements. 

A. Continuous Rotation (indoor) 

Fig. 12 shows actual rotation plotted against the rotation 
predicted by odometry. The slope of the linear fit is 0.875 
whereas perfect rotation estimation would produce a fit with 
slope 1. This suggests that there is systematic error in the 
odometry measurements that accumulates over time at a rate of 
0.125 radians for every 1 radian the Jaguar is instructed to 
rotate. A possible cause for this systematic error was an 
inaccurate measurement of the effective radius of the Jaguar, 
Lrobot. Error due to uncertainty in measurement from the 
compass was 0.05 radians, negligible compared to the 
systematic error and random error. 

Fig. 14 shows the random error that occurs for an average 
rotation of 20.1π over 18 trials. A Gaussian curve is fitted over 
the histogram to describe the approximate probability 
distribution of the Jaguar’s random error in rotation. The mean 
is offset from 0 due to the systematic error shown in Fig. 12. 
From this plot we can see a standard deviation of 2.94 radians. 
This means that 95% of the error around the mean rotation of 
20.1π will be within ±5.88 radians of the mean. The error due 
to uncertainty in measurement of 0.05 radians is again 
negligible compared to the effects of random error. 

Together, Fig. 12 and Fig. 14 effectively characterize the 
error of rotation indoors. Systematic error steadily increases 
with a slope of 0.125, and random error also increases at a rate 
that we were unable to determine without collecting more data. 
It is clear, though, that systematic error and random error both 
become significant at 20.1π rotations. For this rotation, the 
systematic error has accumulated to 7.89 radians, even more 
than the random error contribution of 5.88 radians. 

B. x and y Translation (indoor) 

Experiments were performed to determine the error in the x 
and y global translation of the Jaguar robot. This involved 
measuring the estimated distance traveled and the actual 
distance traveled, and analyzing the error (estimated – actual). 

The error in the x translation will be discussed first. Following 
that, the error in the y translation at different x displacements 
will be discussed. 

1) Systematic error/calibration error of x translation 
In a perfectly calibrated motion estimation model, the 

average actual displacement should tend to equal the estimated 
displacement with a 1:1 ratio. However, Fig. 15 shows a 0.91:1 
ratio of actual:estimated x displacement. This systematic error 
might originate from poorly calibrated wheel diameter values 
in the kinematic model used. The equation for Δs in (3.4)
determines the forward displacement of the robot at each clock 
cycle, and uses calibrated values of Lwheel from (3.1) and (3.2). 
These values were measured directly from the diameter of the 
wheels on the tracks. However, since they are tracks, and not 
wheels as our model assumed, the “effective” wheel radius 
may be different. Refer to the discussion in section VIII on 
how to use this ratio to recalibrate the kinematic model. 
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Fig. 12. Estimated vs. actual total rotation of the Jaguar robot, indoors, 

showing a linear trend (red). The green line, with slope of 1, is what should 
occur; ideally, the estimated should equal the actual. 
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Fig. 13. Residual plot of Fig. 12, showing the increasing random error of 

Jaguar’s continuous rotation. 
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Fig. 14. Histogram plot of the total rotation error at 20π, with a Gaussian 

distribution fit of the error of standard deviation 2.94 rad and mean 7.82 rad. 

 

Fig. 15. Estimated x displacement vs. actual x displacement, showing a 

systematic error of slope 0.91 where a correctly calibrated system should give 

a slope of 1.00. The y-intercept, 0.004 m, is negligible given the uncertainty 

of the measurement with a ruler. 

2) Systematic drift error in y translation 
As illustrated by the exposure photo in the Introduction 

(Fig. 2), the drift in the y coordinate over time is a main source 
of error. This drift is far more significant than the drift in the x 
coordinate. Analytically, this makes sense due to the equations 
for Δx and Δy in (3.5) and (3.6). Notice how a noisy angle in 
the sine function in Δy corresponds to a larger error than would 
a noisy angle in the cosine function in Δx. The random error of 
Δy can be assumed to have a Gaussian distribution (Siegwart 
et. al). 

The systematic error involved in the drift of the y 
displacement is shown in Fig. 16 by the slope of 0.028. This 
means for every meter traveled straight forward in the x 
direction, the robot’s motion estimation model will have an 
error of, on average, 2.8cm in the positive Y direction. The 

robot has a tendency to curve left. This systematic error may 
come from several causes; it might be caused by the tendency 
for one side of the robot to slip more, the uneven distribution of 
mass in the robot, or perhaps a physical misalignment of the 
tracks or motor on the robot. A straight line path in the motion 
estimation model  may be a circular path in reality.  

Similar to Fig. 16, Fig. 17 shows the error in the y 
displacement as the robot goes in reverse. The larger slope, 
0.091, suggests that, on average, the robot curves more when 
going backwards. However, there may not be enough data to 
substantiate this claim, since the r-squared value is 0.77. This 
requires further investigation. 

3) Random noise and accumalitive drift in y translation 
In addition to the systematic error involved in the y 

translation, there is also significant random error shown by the 
disparity of the points from the linear fit line. These random 
errors are shown by the residual plots in Fig. 18 and Fig. 19. 
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Fig. 16. Forward x displacement vs. the error (estimated – actual) in the y 

displacement, showing systematic error with approximate slope of 0.028—
there is a tendency for the Jaguar to lean in the positive y direction. The y-

intercept of 0.023m suggests that perhaps the systematic error is not linear. 

However, more data over a larger range would be required to make a qualified 
judgment. 
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Fig. 17. Error in y displacement in the reverse x direction, with R2 = 0.77 
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Fig. 18. Residual plot of Fig. 16 showing random error normally distributed 

around the linear fit. The sample σ at 1.1m is approximately σ = 0.03m, and at 

2.5m is σ = 0.07m 
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Fig. 19. Residual plot of Fig. 17 showing random error normally distributed 

around the linear fit. The sample standard deviation at 1.1m is σ = 0.03m and 

at 2.5m is σ = 0.07m. 

The random error of the y displacement of the robot for 
travelling 1.1 meter in the x direction, both forwards and in 
reverse, can be modeled as a random error with normal 
distribution of sample standard deviation σ = 0.03m. Similarly, 
at 2.5 meters, the standard deviation is σ = 0.07m. Although 
only 5 data points were collected on each distance, the 
calculated standard deviation seems to be consistent, as seen by 
the ellipses. From the two distances, it seems as though the σ of 
the random error in y displacement increases approximately 
linearly over x displacement: 0.03m each meter. However, 
there is too little data to effectively justify that claim. Despite 
that, this standard deviation can be very useful in calculating 
the accumulated random error over time. 

C. x Translation (Concrete and grass) 

In addition to characterizing the error of Jaguar in the lab 
indoors, the systematic error of the x displacement on concrete 
and grass is also characterized, shown in Fig. 20. The 
systematic error on the grass and concrete is significantly 
similar to the systematic in the indoors, within 15% (or 
approximately 1cm). The difference is not significant enough 
to draw any meaningful conclusions on how the surface of 
concrete, grass, or indoors affects the systematic error in x 
displacement.  

Ideally, the random error in y displacement on different 
terrains should be compared. However, due to time limitations, 

these experiments were not conducted. This requires further 
investigation.  
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Fig. 20. Plot of predicted x displacement with actual x distance traveled. This 

plot shows a systematic error with -0.094 for each meter predicted on grass 
and -0.080 for each meter predicted on concrete. 

VII. SUMMARY OF RESULTS 

The summary of the results is shown in the TABLE I. The 
uncertainty of each value was not analytically calculated as 
there was not enough data to properly use analytic techniques 
to significantly determine the uncertainty.  

TABLE I.  SUMMARY OF KEY ODOMETRY ERROR RESULTS 

 Systematic error 

(actual/predicted) 

 

Systematic Error  

(error/predicted) 

Random error 

sample standard 

deviation (σ) 

Rotation 
(Indoors) 

0.875 rad/rad  
   ± 0.005 

0.125rad/rad  
   ± 0.005 

2.94 rad @ 20π 
   ± 0.05 

x translation 

(Indoors) 

0.905 m/m 

   ± 0.005 

0.095rad/rad  

   ± 0.005 

negligible 

y translation 
(Indoors) 

N/A 0.03 m/m ±0.01 
     @ forward 

0.09 m/m ±0.01  

     @ reverse 

0.03 rad @ 1.1m 
   ± 0.01 

0.07 rad @ 2.5m 

   ± 0.01 

x translation 

(Concrete) 

0.920m/m  

   ± 0.005 

0.080m/m 

   ± 0.005 

negligible 

x translation 
(Grass) 

0.904m/m  
   ± 0.005 

0.096m/m 
   ± 0.005 

negligible 

a. The uncertainties of the systematic error are estimated based on the measurement error of each trial and 
the closeness of the linear fit lines 
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VIII. CORRECTION TO MODEL 

By using the systematic errors determined in the previous 
section, we can modify the constants used the kinematic model 
to eliminate the systematic error. 

First, using the systematic error of x displacement to 
modify Lwheel in (3.1) and (3.2), redisplayed below: 

2 r
r wheel

rev

d
s L

D



  . 

The new radius of the wheel, Lwheel , is the old Lwheel = 0.28 
divided by the systematic error of 0.91: 

 , , / 0.91 0.309mwheel new wheel oldL L   (3.7) 

Similarly, the new Lrobot in (3.3), redisplayed below, is 
divided by 0.91, to uncorrect the new Lwheel, then multiplied by 
0.875, 

2

r l

robot

s s

L


 
  . 

So, following, we can determine the new radius of the 
robot, Lrobot. 

 , , / 0.91*0.875 0.232mrobot new robot oldL L   (3.8) 

With the new constants, we can obtain a much better 
estimated motion. This is illustrated in the figure below. An 
iPhone taped to the Jaguar, running the app “SensorLog” by 
Bernd Thomas, provided a time-logged value of the Jaguar’s 
rotation. This logged data was compared with the logged data 
from Jaguar. 

 
Fig. 21. Comparison of old model with new model constants with continuous 

stationary rotation. Notice the improved estimation. 

IX. CONCLUSION 

The results show that odometry alone cannot be relied upon 
to localize the Jaguar’s position or orientation. The systematic 
error in rotation and x displacement were characterized to a 
two significant figure of certainty. The systematic error in y 
displacement—how much the robot systematically curves—
requires further investigation. Additionally, further 
experimentation in characterizing the random error could prove 
valuable in obtaining a higher precision of the sigma of the 
normally distributed random error in y displacement and in 
rotation.  

From the rotation experiment conducted indoors, the 
random error distribution was determined only around 20.1π 
rotations. However, random error accumulates as the Jaguar 
rotates, so collecting more data would allow us to determine 
the rate at which random error accumulates—whether it’s 
linear, polynomial, or exponential. 

One issue we did not expect when we set up the Jaguar to 
rotate outdoors was that it could not turn in place on concrete 
or grass. The static friction of coefficient was too high 
anywhere other than tiled floors to rotate in place. For future 
labs and experiments that take place outdoors, the odometry 
error data we collected for rotation will not be very useful. We 
would find it more useful to conduct further odometry tests 
outdoors by rotating just one track, as this is the motion the 
Jaguar Lite will use to rotate outdoors. 

By the kinematic model, we would assume that the errors 
in rotation and in translation are a simple vector addition. 
However, that may not be true. There may be more random 
slippage when the robot is rotating stationary than when it is 
travelling in a wide curve. To characterize this error, more data 
is required, and a method to map the robot’s actual path would 
need to be devised. 

Currently, the calibration correction to the kinematic model 
does not implement the systematic error from the y 
displacement, which showed that the robot’s motion tends to 
curve. Implementing this calibration may be useful to ensure 
the robot would go straight. However, since the random error 
of the y displacement may be on the same order of magnitude 
as the systematic error, this additional calibration may not 
prove to be as useful. 

Another improvement could be to consider how different 
velocities or acceleration of the robot may contribute to 
different error characteristics. Maybe if the robot goes slower, 
there would be less slippage, causing a tighter distribution of 
random error. Furthermore, the robot is currently instructed to 
stop immediately. If the deceleration is gradual—if it comes to 
a stop gradually—there may be less slippage and hence the x 
error may be less. Additionally, since a lower battery life 
decreases the maximum torque of the motor, a lower battery 
life also decreases maximum acceleration. Hence, battery life 
may also affect the difference in the error characteristics. 

Overall, the results collected in this lab allowed effective 
recalibration to the Jaguar’s kinematic model. They also 
allowed us to better understand the random errors involved in 
rotation and translation of the Jaguar robot. The lab also 
demonstrated that further investigation is required to establish a 
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more concrete characterization of the random normal 
distribution of each global coordinate. Using odometry alone 
cannot reliably localize the Jaguar robot due to too many 
random sources of error. If the ultimate goal is to enable 
autonomous control of the Jaguar, a more reliable method of 
localization, perhaps involving the laser range finder, should be 
considered. 
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