#### E11 - Autonomous Vehicles





#### Line Following Race Postmortem

# **Reliable Platform**

- Both of your robots on a team should be working well
  - Motors should operate consistently
  - Sensors should return consistent results
  - Reliable Gold code detection
  - FTDI download should work reliably

# **Reliable Platform**

- If any of these aren't robust, get them working right away
  - Preferably before your lab section meets
  - Grutors available for special appointments email them!
  - Don't succumb to the temptation to postpone!

#### Line Following Race Postmortem

- What was hard?
- What worked?
- Descriptions from winning teams



#### Overshoot

- Feedback control systems tend to become unstable as their speed increases.
  - First manifestation is "overshoot"
  - Many robots demonstrated this, especially if you reduced your gear ratio.



#### **Overshoot** Compensation

```
void loop()
{
  int reflect;
  reflect = analogRead(4);
  // follow outside line
  if ( reflect > 870) {
    setPowerLevel(255); turnL();
  }
  else if ( reflect < 830) {</pre>
    setPowerLevel(255); turnR();
  else {
    setPowerLevel(255); forward();
  }
}
```

#### **Overshoot** Compensation

```
void loop()
{
  int reflect;
  reflect = analogRead(4);
  // follow outside line
  if ( reflect > 870) {
    setPowerLevel(130); turnL();
  }
  else if ( reflect < 830) {</pre>
    setPowerLevel(130); turnR();
  }
  else {
    setPowerLevel(255); forward();
  }
}
```

#### **Overshoot** Compensation

```
void loop()
{
  int reflect;
  reflect = analogRead(4);
  // follow outside line
  if ( reflect > 870 + random(100)) {
    setPowerLevel(130); turnL();
  }
  else if ( reflect < 830 - random(100)) {</pre>
    setPowerLevel(130); turnR();
  else {
    setPowerLevel(255); forward();
  }
}
```

# **Debug Techniques**

- Printing sensor readings
  - Change to 115,000 baud to reduce disturbance to program
- Slow things down
  - Program the robot to halt when it gets in a certain condition (e.g. excess overshoot)
- Other favorite approaches?

#### **Other Lessons**

- Fully charge your batteries in advance (!)
- Secure your sensors
  - Inconsistent readings may happen if sensors shift



#### **Other Lessons**

- Test, test, test!
  - Many teams were still fixing problems when the event should have started.
  - Be sure it is working flawlessly the day before!
  - Arrive early for a final test
- Murphy's Law



# Line Following Race PostmortemCompetition Kick-Off

- Moonbase Epsilon
- Green Industries and White Incorporated
- Vying for the universe's largest reserve of epsilonium
  - For making very small things!



- Locating Stations
  - All stations will broadcast gold codes corresponding to their number, as indicated previously on the map



- Claiming Corner Stations (1-4)
  - They are initialized as claimed as shown below.
  - Corner stations have a bump panel on the front.
  - No reclaiming for 2 seconds



- Claiming Central Stations (5-9)
  - Initialized as unclaimed
  - Claimed by flashing a gold code at the station using an LED
    - The gold code must be seeded with the station's number
    - Inverted to change it to green, non-inverted to white



#### Timing

#### Matches will last 1 minute



http://lssacademy.com/2008/06/30/ban-the-stop-watch/

#### Scoring

- 1 point: each beacon claimed by the team at the end of the match (each team starts with two points for the bump beacons initially at their color)
- 1 point: robot ends with any part of their robot touching the ground inside either starting square (only if the robot moved out of the square during the match)
- Ties are broken by the more active team by referee decision

#### Dangerous Behavior

 Robots in danger of damaging the field, the opponent, or themselves may be removed at the discretion of the referee

#### Phase 1:

- Each team plays 2 other teams
- Top 8 teams qualify based on:
  - Number of Wins
  - Number of Wins by opponents
  - Number of Points earned
  - Original Seeding number
- Phase 2:
  - Tournament Bracket



- Your robot must have at least one physical modification
  - New sensor
  - New actuator
  - Improved mechanical design (must fit inside 7" square)
  - Be creative (!)
  - Changing gear ratio doesn't suffice
- You must make a plausible case why the physical modification will improve performance
  - Not simply a cosmetic or silly change
- Must be operational by the scrimmage (Nov. 11)
  - Order parts this week!

#### Resources

- You may spend a maximum of \$40
- Your team may print modified chassis
  - At the standard rate of \$10/in<sup>3</sup>
- Machine shop
  - Only use the machines where you are qualified
  - Always have proctor supervision
- 24/7 Lab access
  - Always try to work with a partner in lab
  - Always keep the door open

### Milestones

#### 11/06: Demonstration of Gold Code Reading

- In lab. Students must demonstrate gold codes are detected.
- Robots must spin around if any of gold codes 5-9 are detected

#### 11/13: Scrimmage

- In lab. Physical mod ready. Demo your operational bot capable of claiming at least one beacon.
- II/20: Final Competition
  - 5:30-7 pm, (Shan Theater)
  - Invite your friends and family!
  - No lecture/lab this week.
- I2/04: Final Presentations
  - In lab section
- 12/13: Final Report Due

#### Remember...

#### Always back up your code!