E11 - Autonomous Vehicles

Feedback Control
Disturbance

http://maxddna.wikidot.com/feedback-control

Coming Up in E11

- This week's lab:
- line-following robot
- completed in teams (within same lab session)
- After fall break:
- No lab week of 10/23
- Line-following competition! (in class -Wednesday 10/18)
- Game logistics and guest lectures:
- 10/23: Game Kickoff!
" 11/13: Game Scrimmage (in class)
" 11/20: Final Game Competition!! (Monday, 5:30pmGalileo)

E11 Lab Access and Policies

- The door code is: 4- 3-12 (Parsons B171)
- Keep lab door open when you're in it - make sure it's closed and locked when you leave, and turn lights off
- Don't remove anything from the lab
- Do not touch other people's robots/stuff
- Keep the lab clean and organized - throw away garbage, put stuff back where it belongs. . The lab should look as good or better as when you got there!
- You must take your robots with you
- Turn off all soldering irons when leaving!!!!!!

Outline

Control Loops
Developing Control Algorithms

Outline

Control Loops

- Open loop
- Closed loop

Developing Control Algorithms

Open Loop Control

- Output activated according to preset rules
- Example 1: sprinklersturn on for 5 minutes every morning, independent of current weather conditions
- Example 2: a heater turns on for 10 minutes every
 hour independent of current temperature.

Closed Loop Control

- Output is dependent on and affects inputs
- Example 1: sprinklersturn on every morning until a desired moisture level is reached (as determined by a moisture sensor)
- Example 2: a heater turns on until the thermostat reaches a desired temperature (as determined by a thermocouple)

http://home.howstuffworks.com/water-heater.htm

Block Diagrams

- Represent a system, inputs, and outputs

Data, variables, signals, ...

Block Diagrams

- Represent a system, inputs, and outputs

- Inputs: Desired states or sensors measurements
- E.g. Thermocouple, distance sensor, phototransistor, reflectance sensor, force plate
- Outputs: Signals sent to actuators
- E.g. Heater, motor, data collector

Block Diagrams

Open Loop System
 - i.e. no loop

Block Diagrams

- Closed Loop System:
- Output affects input
- Sensor measurements used as input

Detailed System

Open Loop

1. Controller
2. Actuator
3. Plant

Detailed System

- Closed Loop

1. Controller
2. Actuator
3. Plant
4. Sensor

Control Example

- Controller:
- Receives input from plant, controls actuator(e.g.thermostat)
- Actuator:
- Heater/Cooler
- Plant:
- A room
- Sensor:
- Temperature Sensor (Thermocouple?)

Outline

Control Loops

- Open loop
- Closed loop
- Bang-bang control
- Proportional control

Developing Control Algorithms

Feedback Control

- Bang-Bang Control
- The system checks the input (via a sensor), if it's not a desired value, the controller turns on actuator
- Otherwise, the controller turns off actuator

Other Feedback Control Method

- Proportional Control:

- The system responds proportional to the error:
error $=($ desired value - measured value $)$

Other Feedback Control Method

- Example:
- Adjusting hot and cold faucets to get the desired temperature
- If the temperature is much colder than desired, the hot water faucet is opened a lot (proportional to desired-measured temp)
- If the temperature is slightly colder than desired, the hot water faucet is only opened a little (proportional to desired-measured temp)

Other Feedback Control Method

In General

Calculate Error

$$
e=x_{d e s}-x
$$

Calculate Control effort

$$
u=K_{p} e
$$

Other Feedback Control Method

- Example:
- Drive Robot to a distance 10 cm from wall.

$$
\begin{aligned}
e & =x_{\text {des }}-x \\
& =10-I R \text { Sensor Measurement } \\
K_{p} & =100 \\
\text { motor Signal } & =\min \left(K_{p} e, 255\right)
\end{aligned}
$$

Outline

- Control Loops

Developing Control Algorithms

- What are algorithms?
- How to represent algorithms
- Example algorithms

Control Algorithms

- Algorithm:
- A sequence of steps needed to accomplish a goal
- Algorithms are frequently represented using flowcharts

Control Algorithms

- Flow Chart Primitives

Control Algorithms

- Problem solving

1. State goal in words
2. Create algorithm
3. Code algorithm
4. Test/debug
5. Repeat steps $2-4$ until satisfied

Algorithm Example 1

Open Loop Control:

- Design an algorithm that turns the buzzer on twice a second for 10 ms . Draw a flowchart of your algorithm.

Algorithm Example 1

Algorithm Example 2

Closed Loop Control

- Use bang-bang control to design an algorithm that turns the heater when the temperature is too low.

Algorithm Example 2

Algorithm Example 3

Closed Loop Control

- Use proportional control to drive your robot up to an object as fast as possible without hitting it. (When your robot reaches the object, it should stop ())

Algorithm Example 4

Summary

- Open Loop Control:
- System function does not affect the inputs
- Closed Loop Control:
- System function affects the inputs
- Types of Feedback Control:
- Bang-bang control: the system turns on (does something) until a desired value is reached
- Proportional control:the system responds proportional to the error (desired - measured)
- Algorithm:
- Sequence of steps needed to accomplish a goal
- Flowchart:
- Graphical representation of algorithm

