
Goal:

To	learn	how	think in	the	procedural	paradigm	and	write	
code	to	implement	a	procedure	in	C.	

Consider	the	following	guessing	game:

I	pick	a	number	from	0	to	500.

You	guess	a	number	and	I	tell	you	if	it	is	equal	to	my	
number,	greater	than	my	number	or	less	than	my	number.

You	want	to	find	my	number	as	quickly	as	you	can.

Write	a	paragraph	carefully	describing	how	you	would	
proceed	to	guess	my	number.

I observe that in this game I will always know that the
number is between some low number and some high
number. Initially the low number is 0 and the high number
is 500 by the rules of the game. I will choose to guess the
mean of the low and high number. If my number is too low
I will replace the low number with my guess. If my number
is too high I will replace my high number with my guess. I
will continue guessing the mean of the low and high
numbers until I am correct.

Make an indication in your paragraph for each of the
following:

• Each piece of information
• Each place the value of the information changes
• Each time a question is asked or information is needed

I observe that in this game I will always know that the
number is between some low number and some high
number. Initially the low number is 0 and the high number
is 500 by the rules of the game. I will choose to guess the
mean of the low and high number. If my number is too low
I will replace the low number with my guess. If my number
is too high I will replace my high number with my guess. I
will continue guessing the mean of the low and high
numbers until I am correct.

• Three integers are needed: guess, high and low
• Initially low = 0; high = 500; guess = (high+low)/2;
• Make the guess
• If the guess is correct then we are done, while it is not

correct
• If the guess is high, then high = guess
• Otherwise the guess must be low, so low = guess
• Make guess = (high + low)/2

Try to write a list like this for your paragraph

• Three integers are needed:
guess, high and low

• Initially low = 0; high = 500;
guess = (high+low)/2;

• Make the guess
• If the guess is correct then we

are done, while it is not correct
• If the guess is high, then high =

guess
• Otherwise the guess must be

low, so low = guess
• Make guess = (high + low)/2

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

The	bold	line	is	a	C	comment.	

Single	line	comments	begin	with	//

Multiple	line	comments	start	with	/*	and	
end	with	*/

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

The	bold	line	is	a	C	statement.	C	statements	end	
in	a	semicolon.

The	statement	defines	guess,	high	and	low	as	
integer	variables.	

C	has	the	following	primitive	types	for	variables:

int,	char,	short,	long,	long	long<- these	are	
integer	types

float,	double	<- these	are	floating	point	types

Integer	types	may	be	signed	or	unsigned:
short	var1
unsigned	short	var2

Signed	means	they	can	take	on	negative	values	
but	the	range	cut	in	half

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

The	bold	lines	assign	values	to	the	variables	low,	
high	and	guess.

Variables	in	C	cannot	be	assumed	except	in	
specific	cases	to	be	initialized	to	any	known	value.	

You	must	initialize	the	value	before	you	use	the	
variable.	

[Global	variables	in	C	are	an	exception	to	this	in	
that	they	have	a	0	initial	value,	but	it	is	still	
considered	good	practice	to	initialize	them	
explicitly.]

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

While	is	a	flow	control statement.	

It	tests	the	logical	value	of	the	statement	inside	
the	parentheses	and	while	it	is	true.	It	allows	the	
steps	that	are	inside	the	braces	{}	to	execute.	

!=	means	not	equal	

This	while	loop	calls	a	function:	testGuess(guess)

The	function	takes	a	single	variable	(guess)	as	an	
argument	

Not	shown	here	the	implementationof	testGuess
returns 0	if	the	guess	is	correct.	It	returns 1	if	the	
guess	is	too	high,	and	it	returns -1	if	the	guess	is	
too	low.

The	while	loop	will	keep	trying	guess	until	it	is	
correct!

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

if is	a	flow	control	statement	to	conditionally	do	
the	steps	inside	the	braces	once	if	the	condition	
inside	is	true.

==	asks	if	something	is	equal	rather	than	
assigning	a	value.

Here	if	the	guess	is	too	high	(testGuess returns	1),	
then	we	change	the	value	of	high	to	the	value	of	
guess.

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

else is	a	flow	control	statement	to	conditionally	
do	the	steps	inside	the	braces	once	if	the	
condition	of	the	preceding	if	statement	was	false.	

If	the	guess	had	been	correct	the	while	loop	
would	not	have	executed.

If	the	guess	was	too	high	then	high	=	guess;

If	this	was	not true	then	the	statements	inside	
the	else	are	run:	low	=	guess;	

This	is	the	only	remaining	option.

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

Last	we	must	update	the	guess	to	the	new	guess.

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;
printf("%d\n", guess);

}
printf("The number was %d\n", guess);

We	have	added	two	more	lines	to	the	program	to	
help	us	see	both	the	work	of	the	program	and	the	
correct	number.

These	lines	call	a	built	in	function	called	printf,	
which	stands	for	formatted	print.

It	prints	a	line	out	on	the	screen.	%d	is	a	
placeholder	for	interpreting	a	variable	and	
printing	it	as	a	decimal	number.

\n	is	an	escape sequence to	the	new	line	
character	which	is	input	in	a	keyboard	with	the	
enter	key.

The	first	printf function	call	will	print	each	guess	
made.

The	second	printf function	call	will	print	the	final	
correct	number	out.

• Three integers are needed:
guess, high and low

• Initially low = 0; high = 500;
guess = (high+low)/2;

• Make the guess
• If the guess is correct then we

are done, while it is not correct
• If the guess is high, then high =

guess
• Otherwise the guess must be

low, so low = guess
• Make guess = (high + low)/2

//And now in C

int guess, high, low;
low = 0;
high = 500;
guess = (high+low)/2;

while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high+low)/2;

}

#include <stdio.h>
#define magicNumber 42

int testGuess(int guess)
{

if(guess == magicNumber) return 0;
else if(guess > magicNumber) return 1;
else return -1;

}
int main(void)
{

int low, high, guess;
low = 0;
high = 500;
guess = (high + low)/2;
while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high + low)/2;
printf("%d\n", guess);

}
printf("The number is %d\n", guess);
return 0;

}

Here	is	a	full	program!

#include	 is	a	way	of	adding	other	code	to	the	program.
#include	<stdio.h>	adds	standard	I/O’s	functions	which	is	where	
printf lives

#define	 is	a	way	of	creating	a	label	for	the	stuff	the	right	of	 the	
label	(42	here).	Thus	everywhere	magicNumber appears	after	this	
#define	statement	will	be	replaced	with	42.	

#define	keeps	your	code	readable	and	allows	you	to	avoid	magic	
numbers	 repeating	in	your	code

int main(void)	 is	the	first	code	to	execute	in	a	normal	C	program

return	as	mentioned	 is	the	value	the	function	 gives	back	to	the	
calling	function.	

#include <stdio.h>
#define magicNumber 42

int testGuess(int guess)
{

if(guess == magicNumber) return 0;
else if(guess > magicNumber) return 1;
else return -1;

}
int main(void)
{

int low, high, guess;
low = 0;
high = 500;
guess = (high + low)/2;
while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high + low)/2;
printf("%d\n", guess);

}
printf("The number is %d\n", guess);
return 0;

}

The	code	is	available	at:
http://pages.hmc.edu/bbryce/first.c

Change	the	value	of	magicNumber and	run	the	
code	on	codepad.org,	verify	that	it	works

#include <stdio.h>
#define magicNumber 42

int testGuess(int guess)
{

if(guess == magicNumber) return 0;
else if(guess > magicNumber) return 1;
else return -1;

}
int main(void)
{

int low, high, guess;
low = 0;
high = 500;
guess = (high + low)/2;
while(testGuess(guess) != 0)
{

if(testGuess(guess) == 1)
{

high = guess;
}
else
{

low = guess;
}
guess = (high + low)/2;
printf("%d\n", guess);

}
printf("The number is %d\n", guess);
return 0;

}

The	code	is	available	at:
http://pages.hmc.edu/bbryce/first.c

Change	the	value	of	magicNumber and	run	the	
code	on	codepad.org,	verify	that	it	works

Now	change	the	algorithm.	Instead	of	guessing	
the	mean	value,	and	using	low	and	high,	just	guess	
in	order	from	0	until	you	reach	the	correct	value.	
Remove	any	unused	variables.	

