
1 

ARW – Lecture 04 
Point Tracking 

Instructor: Chris Clark 
Semester: Summer 2016 

Figures courtesy of Siegwart & Nourbakhsh 
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Planning Based Control 

Perception 

Localization Path Planning 

Motion Control 

Prior Knowledge Operator Commands 
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ARW Goals 
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Odometry Kinematics 

§  Lecture Goal 

§  Develop control law that is guaranteed to drive a robot 
to a desired robot state. It should map the current robot 
state and desired robot state to the new control vector. 

    Ut = f(Xt, Xdes) 
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Point Tracking 

1.  P Control 
2.  Linear Systems 
3.  Motion Control 
4.  Reachable Space 
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P Control 

§  Proportional Feedback Control – P Control   
§  Uses the error between the desired and measured 

state to determine the control signal. 
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P Control 

§  If xdesired is the desired state, and x is the actual 
state, we define the error as: 
    e = xdesired – x 



8 

P Control 

§  The control signal u is calculated as 

    u = KP e 
 

 where KP is called the proportional gain. 
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P Control 

§  Example: 
§  Consider the orientation control of an autonomous 

helicopter. Assume the orientation is completely 
controlled by the rear rotor.  

     
  u 

θ 
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P Control 

§  Example cont’: 
§  The control signal u is calculated as 

    u = KP(θdesired - θ) 
§  Notes: 

§  If θdesired = θ, the control signal is 0. 
§  If θdesired < θ, the control signal is negative, resulting in an 

decrease in θ.  
§  If θdesired > θ, the control signal is positive, resulting in an 

increase in θ. 
§  The magnitude of the increase/decrease depends on Kp 
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P Control 

§  Block Diagram: 
    u = KP(θdesired - θ) 

KP 
Helicopter Rotar θ u e 

- 
+ θdesired 
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P Control 

§  Time Domain Response of step response 
§  Step from θdesired = 0 to θdesired = 1. 

     

θdesired 

time 
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P Control 

§  Time Domain Response: 
§  Step from θdesired = 0 to θdesired = 8. 
§  Different dynamics in this example… overshoot! 

     



14 

Point Tracking 

1.  P Control 
2.  Linear Systems 
3.  Motion Control 
4.  Reachable Space 
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Linear Systems 

§  Recall that the forward kinematics are a linear 
differential equation. 

§  We will use this equation to help develop a 
motion controller for point tracking 

§  We start by observing how the state x behaves if 
it obeys the following equation:  
      

                          x = dx/dt = ax 
                where a is a constant
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Linear Systems 

§  It should be obvious that the solution to the 
equation  
     x = ax 
  
   is 
     x(t) = x0 exp(at)   
   where 
     x0 is the initial state 
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Linear Systems 

§  To confirm this solution, substitute into the 
original equation:  
          x = ax 
    d[x0 exp(at)]/dt = a[x0 exp(at)] 
           ax0 exp(at) = ax0 exp(at) 
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Linear Systems 

§  To view how the state x behaves over time, we 
can plot out x = x0 exp(at), assuming a is positive:  
       
   x(t) 

time 

x0 
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Linear Systems 

§  If a is negative and we can plot out x=x0 exp(at), 
we get much different results:  
       
   x(t) 

time 

x0 

0 
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Linear Systems 

§  This exponential decay informs us that the state x 
decays to zero over time. 
§  We say this system is “STABLE”. 
§  We use this property in control theory to drive states 

down to zero (e.g. if e = xdesired - x , drive e to 0). 

e(t) 

time 

e0 
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Linear Systems 

§  The above example was a one dimensional linear 
system (i.e. single state x). 

§  Our system is a multi-dimensional system (i.e. 3 
states x, y, θ). 

§  We need to describe the system with matrices: 
     x = Ax 

 
  where A is a matrix such that A∈ Rnxn  
     x is a vector such that x∈ R1xn  
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Linear Systems 

§  The eigen values of A, represented by λi, are 
coefficients that satisfy the equation: 
      Axi = λi xi  
 for particular states called xi, called the eigen 
vectors. 

§  A solution to the system can be written as the 
combination of eigen vectors: 
     x(t) = x1 e λ1t  + x2 e λ2t +…+xn e λnt   
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Linear Systems 

§  In this case, the system 
     x = Ax 

   is said to be stable if the eigen-values of A are 
less than 0. 
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Linear Systems 

§  We solve for eigen values by noting: 
    (A - λI)x = 0 

§  For this to hold true, 
     det (A - λI) = 0 
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Linear Systems 

§  Example: 

  Therefore λ1 = 6, λ2 = 1 
  The system is not stable! 
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Linear Systems 

§  Summary: 

§  If our robot behaves like a system of the 
form e = Ae, where the eigen values of A are 
negative and e represents the difference 
between desired and actual states, the 
system will move to our desired state! 
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Point Tracking 

1.  P Control 
2.  Linear Systems 
3.  Motion Control 
4.  Reachable Space 
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Motion Control 

§  Goal is to follow a trajectory 
from an initial state to some 
desired goal location. 

§  Several approaches 
§ Could construct a global 

trajectory first, then track 
points on the trajectory 
locally 
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Motion Control 

§  If we define the error to be 
in the robot frame: 
            e(t) = [ x y θ ] T 

§  Goal is to find gain matrix K 
such that control of v(t) and 
w(t) will drive the error e(t) 
to zero. 
            v(t)  =  Ke(t) 
             w(t) Assume goal is 

at [0 0 0] 
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Motion Control 

§ Recall (?) our forward kinematics 

       x         cosθ   0       v 
        y   =   sinθ    0      w 
       θ           0       1 
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Motion Control 

§ We use the coordinate transformation 
     ρ    =   Δx2 + Δy2  
      α    =   -θ  + atan2(Δy , Δx ) 
      β    =    -θ  - α 
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Motion Control 

§ Now we define the problem as driving 
the robot to goal  

        ρ          0 
         α    =   0 
         β          0 
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Motion Control 

§ We know this will happen if the 
dynamics of the system obey 

        ρ               ρ 
         α    =  A   α 
         β               β     
 

 Where A is a 3x3 matrix with eigen values less than 0.      
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Motion Control 

§  Using the coordinate transformation, 
calculate the new kinematics: 

 
     ρ    = projection of v on ρ 

   = - v cos(α) 

Goal 

XI 

YI 

ρ 

α 

v 
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Motion Control 

§  Using the coordinate transformation, 
calculate the new kinematics: 

 

     ρβ  = projection of v perpendicular to ρ 
   =  - v sin(α) 
     β  =  - v sin(α) / ρ 

 

Goal 

XI 

YI 

ρ 

α 
v 

β 
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Motion Control 

§  Using the coordinate transformation, 
calculate the new kinematics: 

 

        α =  -β - θ 
  α =  -β - θ 
   α =  v sin(α)/ρ  -  w 
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Motion Control 

§  In matrix from: 

       ρ          -cosα        0       v 
       α    =    sinα / ρ    -1      w       for α within (-π/2, π/2 ] 
       β          -sinα / ρ    0 
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Motion Control 

§  Let’s try the control law: 
                    v = kρ ρ      w = kα α + kβ β  

§  Note that this is a form of P control, and if 
ρ, α, β  all go to zero, then v and w will go to 
zero. 



39 

Motion Control 

§  To analyze controller, substitute control 
law into kinematics and linearize: 
§  For small x, cos(x)  ≈ 1 and sin(x) ≈ x 

                 ρ         -kρ            0               0      ρ 
                   α    =   0       -(kα - kρ)       -kβ      α 
                   β          0            -kρ              0      β 
               

§  This is in the form… 
                    e  =A e  
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Motion Control 

§  Check for stability: 
§  Take the determinant of A and  solving for eigen 

values leads to: 
                 ( λ + kρ ) ( λ2 + λ (kα - kρ ) - kρ kβ )  =  0 
 

§  Thus the system will be stable if: 
   kρ > 0      kβ < 0      kα - kρ > 0 
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Motion Control 

§  Testing this control law with many different 
start points: 
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Motion Control 

§  The derived control law works well if α ∈ 
[-π/2, π/2] 

§  For other cases where abs(α) > π/2, we 
must modify the controller. So that the 
robot will move backwards to the desired 
position when required 
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Motion Control 

§  Backwards Example: 

Goal 

Too long 


