ARW - Lecture 01
Odometry Kinematics

Instructor: Chris Clark
Semester: Summer 2016

Figures courtesy of Siegwart & Nourbakhsh
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Odometry Kinematics

= |ecture Goal

= Develop an equation that maps the previous robot
state and wheel encoder measurements to the new
robot state.

X, =X, Uy
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Odometry & Dead Reckoning

= Odometry
» Use wheel sensors to update
position
= Dead Reckoning myr v
= Use wheel sensors and heading R l@/ N

sensor to update positon | @@é

= Straight forward to implement

= Errors are integrated, @ L.
u n bo u n d ed http://www.guiott.com




Odometry & Dead Reckoning

= Odometry Error Sources?
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Odometry & Dead Reckoning

= Odometry Error Sources?

Limited resolution during integration
Unequal wheel diameter
Variation in the contact point of the wheel

Unequal floor contact and variable friction can lead to
slipping
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= Odometry Error Sources?




Odometry & Dead Reckoning

= Odometry Errors

= Deterministic errors can be eliminated through proper
calibration

= Non-deterministic errors have to be described by
error models and will always lead to uncertain position
estimate.
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Modeling Motion

= |f a robot starts from a position X, ,, and the right
and left wheels move respective distances 4s, and
As;, what is the resulting new position X, ?

Vi

A




Modeling Motion

* To start, let's model the change in angle 46 and
distance travelled 4s by the robot.

= Assume the robot is travelling on a circular arc of
constant radius.




Modeling Motion

* Begin by noting the following holds for circular arcs:

As; = Ra As, = (R+2L)a As = (R+L)a




Modeling Motion

= Now manipulate first two equations:
As; = Ra As, = (R+2L)a

To:
Ro = 4s;,
La = (4ds, - Ra)/2
=A4s,/2 — As;/2
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Modeling Motion

= Substitute this into last equation for 4s:

As = (R+L)a
= Roa + La
As; +4s, /2 — As,;/2
= As;/2 + 4s, /2
= As; + ds,
2
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Modeling Motion

* Or, note the distance the center travelled is simply
the average distance of each wheel:

As = Ads, + ds,

2




Modeling Motion

»= To calculate the change in angle 46, observe that it
equals the rotation about the circular arc’s center point

A0 = a




Modeling Motion

= S0 we solve for a by equating a from the first two
equations:

As; = Ra As, = (R+2L)a

This results in:
As;/R=4s./(R+2L)
(R+2L) As, = R 4s,
2L As; =R (4s, - 4s;)
2L As; = R
(4s,.- 4s;)
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Modeling Motion

= Substitute R into
a =4s;/R
=As,(4s,-4s;) /(2L 4s, )
= (4, - 4s,)
2L

So...
A0 = (4s, - 4s;)
2L




Modeling Motion

= Now that we have 46 and 4s we can calculate
the position change in global coordinates.
» We use a new segment of length 4d.

YIA

\9+A9

s




Modeling Motion

= Now calculate the change in position as a function of
Ad.




Modeling Motion

= Using Trig:
Ax = Ad cos(0 + 46/2)
Ay = Ad sin(0 + 46/2)

Y;

A




Modeling Motion

= Now if we assume that the motion is small, then we
can assume that Ad = As :

= So...

Ax = As cos(0 + 460/2)
Ay = As sin(0 + 460/2)



Modeling Motion

= Summary:
Ax = Ascos(8+AB72)

Assin(0 +A072)
As,—As,

2L
As,+ As,
Al = e—m———

-—

Ay

AB =

X
X, = flx,y,0,As,,As)) = |y
0

As,.+ As,

AAS’. + AL‘ "

cos| 6 +

sin| O +

As,—As /
2L

As,—As,

4L
As,—AS,
4L




Modeling Uncertainty in Motion

= | et’'s consider wheel rotation measurement errors, and
see how they propagate into positioning errors.

= Example: the robot actually moved forward 1 m on the x axis,
_but there are errors in measuring this.
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A0

As=1 + e,
40 =0 + e,

where e, and e, are error terms



Modeling Uncertainty in Motion

= According to the following equations, the error e, =
0.001m produces errors in the direction of motion.

Ax = As cos(0 + 46/2)
Ay = As sin(0 + A46/2)

= However, the 40 term affects each direction differently.
If e,= 2 deg and e ,= 0 meters, then:

cos(0 + 460/2) = 0.9998

20 sin(0 + 46/2) = 0.0175



Modeling Uncertainty in Motion

= SO
Ax = 0.9998
Ay =0.0175

= But the robot actually went to x =1,y =0, so the
errors in each direction are

Ax = +0.0002
Ay =-0.0175

= THE ERROR IS BIGGER IN THE “Y”
31 DIRECTION!



Modeling Uncertainty in Motion

* Errors perpendicular to the direction grow much

larger.
E - fa 1 p‘ m m ’(\
* A A

32 0 05 it
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Modeling Uncertainty in Motion

= Error ellipse does not remain perpendicular to
direction.

y [m]




34

Odometry Kinematics

1.
2.
3.
4.

Odometry & Dead Reckoning
Modeling motion — The X80

Modeling motion — An ROV
Odometry in your Sim



ROV Specs

= Two horizontal thrusters,
one vertical

= Forward facing color
camera

» Rear facing B/W camera

* 1.4 m/s (2.6 knots) speed

= 152m depth rating

= Depth & Heading sensors
= SeaSprite Scanning Sonar




The VideoRay MicroROV

ROV Modeling

mli — vr + wq — 26(q° +7°) + ya(pg — 7) + za(pr +9)] = X
m[i‘ —wp +ur — y(;(r2 + pz) + zg(gr — p) + zclqp + 7:)] =Y
m[w — uq +vp — 26(p* + ¢°) + za(rp — §) + ya(rg+p)] = Z
Lp+ (I — I,)qr — (7 + pg) Lz + (r* — ) Iz + (pr — @) Iy
+mlyg(w — ug+vp) — zg(v —wp+ur)] = K
Iyg+ (I — L)rp — (p+ qr)Iey + (p" — ) Loz + (qp — 1) Lz
+m|zg(i — vr +wq) —zg(w —ug+vp)] = M

127-' + (Iy — ]1')17(1 - (q + Tp)ly: + (q‘2 - pg)IJ‘y + (»‘l‘q - p)I:r
+m(zg(v —wp+ur) —yg(it —vr+wq)] = N



=  State vectors:

6 degrees of freedom (DOF):

body-fixed velocity vector:
earth-fixed pos. vector:

vV = E/lT,VzT] =[u,v,w,p,q,r1

n = E71T9771T] = [x,y,z,¢,8,1/;]

Equations of Motion

DOF Surge Sway Heave Roll Pitch Yaw
Velocities u v w p q r
Position & Attitude X ¥ z ¢ 0 Y
Forces & Moments X zZ K M N




Equations of Motion

Initial Assumptions

The ROV will usually move with low velocity when on mission
Almost three planes of symmetry;
Vehicle is assumed to be performing non-coupled motions.

[W. Wang et al., 2006]



Equations of Motion

Horizontal Plane:

muw = —maour + Xyu + Xy ulu| + X
mogt = myur + Y,v + Yy v|v],
[I.' — .-'\7,‘1' + i\'?r|r|"|"| + ."\T.

Vertical Plan:

magw = Zyw + 2, |u.'| w| + Z

vl|w

[W. Wang et al., 2006]



Theory vs. Experiment

Coefficients for the dynamic
model are pre-calculated
using strip theory;

= A series of tests are carried
out to validate the
hydrodynamic coefficients,
including
=  Propeller mapping
» Added mass coefficients
=  Damping coefficients
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Direct Drag Forces

* The drag can be modeled as non linear
functions
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Perpendicular Drag Forces

Heave (Z) drag from surge speed

Lift force in Heave direction (Newtns)
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flow rate (m/s)




Model Verification

angle (radians)

= Yaw Verification
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surge velocity (m/s)
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Model Verification

= Surge Verification
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Fig. 14. Surge test experiment data and simulation result



Autonomous Control
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Odometry on the Jaguar

= (Goals:

= Calculate the resulting robot position and orientation
from wheel encoder measurements.

» Display them with the Matlab plot function

48



Odometry on the Jaguar

= Method cont’:

» Make use of the fact that your encoder has resolution
of 4096 pulses per revolution. Be able to convert this to
a distance travelled by the wheel.

re,. =A4s,
» Given the distance travelled by each wheel, we can

calculate the change in the robot’s distance and
orientation.

As = As, + s, A0 = (4ds, - 4s;)
2 2L

49



Odometry on the Jaguar

= Method cont’:

= Now you should be able to update the position/
orientation in global coordinates.

Ax = As cos(0 + 40/2)
Ay = As sin(0 + 46/2)

50



