
ARW – Autonomous Robot Workshop

Lab 4

Path Tracking

1. INTRODUCTION
The purpose of this lab is to introduce participants to a straightforward point tracking
control system that drives the robot to a desired point, despite the robot’s nonholomic
constraints. By the end of the lab, students should close the entire navigation control
loop, in which the robot kinematics are simulated (Lab 1), the robot localizes itself with
respect to the map (Lab 2), the robot constructs a collision-free path to its goal state
(Lab 3), and uses the point tracking controller implemented in this lab (4) to track the
path.

2. CODE BASE
The arw_simulator.m file should be calling all functions in the code base, (none will be
commented out at this point). See Fig. 2.

The majority of the code to be modified in this lab will be located in the
pathTrackingControl.m file. Within pathTrackingControl(), the function
pointTrackingControl() is called to set the control vector U. You must modify
pointTrackingControl().

Figure 1: Codebase Architecture

arw_simulate

arw

simulateMotion
AndPerception

pathTracking
Control

Initialize
Variables

kinematicModel

constructPath

perception.m perception

localizeRobot

function [X] = arw_simulator(X_0, X_des)

 % Initialize variables
 [X_real, X_est, U, pathTracked, timeStep, M, P, T, e, nodes, deltaT]

= initializeVariables(X_0);

 % Loop over time, until pathtracking is complete
 maxTimeStep = 100;
 while pathTracked == false && timeStep <= maxTimeStep

 % Simulate the actual robot to get the real state, measured
 % odometry O, and range measurements Z
 [X_real, O, Z] = simulateMotionAndPerception(X_real, U, M, deltaT);

 % Localize the robot, i.e. estimate the current state X
 [X_est, P] = localizeRobot(X_est, O, Z, M, P);

 % Construct a new path if it is the first iteration
 [T, nodes] = constructPath(X_0, X_des, M, T, nodes);

 % Determine the control inputs U to track the path T
 [U, T, pathTracked] = pathTrackingControl(X_est, T);

 % Save states and calculate the error e
 X(timeStep,1:3) = X_real;
 e(timeStep) = sqrt((X_real(1)-X_est(1))^2 + (X_real(2)-X_est(2))^2);

 % Plot the output
 plotState(X_real, e, X, Z, M, P, nodes, T);
 timeStep = timeStep + 1;
 end
end

Figure 2: Modified arw_simulator.m file for use with Lab 4.

3. MODIFYING POINTTRACKINGCONTROL
The point tracking control system inputs the desired position to track (X_toTrack) and
the current estimated position (X_est) along with the tolerance within which the desired
state must be tracked (trackingThresholds). Note that trackingThresholds is a 1x2
vector giving position and angle thresholds respectively. The function outputs the wheel
rotational velocities (pulses/sec).

To calculate appropriate wheel velocities, first determine the current value of the
distance error variable (rho) that must be driven to zero. Check if rho is in tolerance, and
if so a rotate on the spot controller should be invoked. To accomplish this, reset rho to
be zero, set alpha to be zero, and set beta to be the angle tracking error, i.e. the angular
difference between the estimated theta of the robot and the desired theta.

If rho is not in tolerance, calculate the angular error variables alpha and beta. Using rho,
alpha, beta, calculate v and w. Something we haven’t covered in lecture, is a method to
convert v and w to individual wheel velocity. Here is some code to accomplish this:

 desiredWheelSpeedR = (v + w*robotWidth)*(2*pi)/(2*pi*wheelRadius);
 desiredWheelSpeedL = (v - w*robotWidth)*(2*pi)/(2*pi*wheelRadius);

Details about derivations of this can be found in the HMC E160 lecture 2,3 notes:
http://www.hmc.edu/lair/E160/lectures.html

Before setting U to be these wheel speeds, we must first make sure they don’t break
any physical speed limits. This speed limiting is coded for you already at the bottom of
the pointTrackingControl() function.

function U = pointTrackingControl(X_toTrack, X_est, trackingThresholds)

 % Some useful variables
 K_rho = 1.0;
 K_alpha = 2.0;
 K_beta = -0.99;
 robotRadius = 0.2;
 robotWidth = robotRadius*2;
 wheelRadius = 0.1;

 % Some helpful calculations
 deltaX = X_toTrack(1) - X_est(1);
 deltaY = X_toTrack(2) - X_est(2);
 ang = atan2(deltaY,deltaX);

 % Calucate rho, the distance to goal
 % rho = ...

 % Check to see if simply rotation on the spot, if rho is small
 % if ...
 % rho = ...
 % alpha = ...
 % beta = ...

 % if rho is still too big, invoke the point tracking theory
 % else ...

 % Calculate alpha and beta
 % alpha = ...
 % beta = ...

 % Calculate v, w
 % v = ...
 % w =

 % Calculate desired wheelSpeed in pulses / second
 %desiredWheelSpeedR = ...
 %desiredWheelSpeedL = ...

 % Check that max velocity in rad/s isn't reached
 currentMaxVel = max(abs(desiredWheelSpeedL), abs(desiredWheelSpeedR));
 maxWheelSpeed = 2*pi;
 if currentMaxVel > maxWheelSpeed
 desiredWheelSpeedR = desiredWheelSpeedR * maxWheelSpeed / currentMaxVel;
 desiredWheelSpeedL = desiredWheelSpeedL * maxWheelSpeed / currentMaxVel;
 end

 % Set the control vector U
 U = [desiredWheelSpeedR desiredWheelSpeedL];

end

Figure 3: The pointTrackingControl.m file for use with Lab 4.

Once you have completed your code, test it out. Make sure the robot follows the red
paths constructed by your motion planner from Lab 4.

