
ARW – Autonomous Robot Workshop 

Lab 2 
 

Localization 
 
INTRODUCTION 
The purpose of this lab is to introduce participants to Particle Filter Localization through 
a Matlab coding exercise that builds on the simulation created in Lab 1. By the end of 
this lab, students should understand how particle sets represent a robot’s belief state, 
and how they can be updated with real time measurements. This lab can be done in 
pairs. NOTE: This lab will likely take longer than 1 hour, and should be completed for 
homework to be ready for day 2 of the workshop. 
 
Codebase 
The Matlab code base  
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

Figure 1: The ARW Matlab codebase. 
 
For Lab 2, we will be only programming in the files named arw_simulate.m and 
localizeRobot.m. In arw_simulate.m, the function arw_simualate() will be modified to 
make sure the localizeRobot() function will be called at every time step of the control 
loop. In localizeRobot.m, there will be two main functions to be modified: localizeRobot() 
and getWeight(). Within these two functions, (and with a helper function), your Particle 
Filter will be implemented. These modifications are described in the next section. 
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3. CONTROL LOOP MODIFICATIONS 
Open the file named arw_simulator.m. It should look similar to (but not exactly like) the 
code shown in Fig. 2. First, note that the first function call to initializeVariables() 
initializes the variable P. This will be your particle set. Second, note the major difference 
between this lab and the previous: in Lab 2 we call the localizeRobot() function.  
 
As in Lab 1, many of the other function calls in the control loop are commented. No 
motion planning is functioning, so we still comment out the call to constructPath(). 
Instead of setting the control vector (which corresponds to right and left motor speeds) 
using the pathTrackingControl(), we will hardcode it for the time being.  
 
At this point, modify your arw_simulator() function as shown below in Fig. 2.  
 
function [X] = arw_simulator(X_0, X_des) 
  
    % Initialize variables 
    [ X_real, X_est, U, pathTracked, timeStep, M, P, T, e, nodes, deltaT ]  

= initializeVariables( X_0 ); 
     
    % Loop over time, until pathtracking is complete 
    maxTimeStep = 100; 
    while pathTracked == false && timeStep <= maxTimeStep 
         
        % Simulate the actual robot to get the real state, measured 
        % odometry O, and range measurements Z 
        [ X_real, O, Z ] = simulateMotionAndPerception( X_real, U, M, deltaT ); 
                
        % Localize the robot, i.e. estimate the current state X 
        [X_est, P] = localizeRobot(X_est, O, Z, M, P); 
         
        % Construct a new path if it is the first iteration 
        %[T, nodes] = constructPath(X_0, X_des, M, T, nodes); 
         
        % Determine the control inputs U to track the path T 
        U=[1200 50*timeStep]; T=[0 0 0 1];%[U, T, pathTracked] = pathTrackingControl(X_est, T); 
         
        % Save states and calculate the error e 
        X(timeStep,1:3) = X_real; 
        e(timeStep) = sqrt((X_real(1)-X_est(1))^2 + (X_real(2)-X_est(2))^2); 
         
        % Plot the output 
        plotState(X_real, e, X, Z, M, P, nodes, T); 
        timeStep = timeStep + 1;  
    end 
end 

Figure 2: Modified arw_simulator.m file for use with Lab 2. 
 



4. LOCALIZEROBOT MODIFICATIONS 
Open the file named localizeRobot.m. It should look like the code shown in Fig. 3. In this 
case much of the code is missing. Given the input values of the previously estimated 
state X_est_tm1 (which is supposed to represent X̂t−1 = [ x̂t−1ŷt−1θ̂t−1]  in units of meters and 
radians), and the recent encoder measurements O = [ ΔφR ΔφL ] in units of pulses 
(where one encoder pulse equates to 1/4096 of a revolution), the recent n 
bearing/range measurements Z = [ γ1 r1; … ; γn rn ], the map M, and the particle set P = 
[ x1 y1 θ1 w1; … ; xm ym θm wm ] of m particles,  the function must calculate the updated 
state X̂t = [ x̂t ŷtθ̂t ]based on the updated particle set P. 
 
Use the lecture notes to fill in the core steps of the particle filter, (see Fig. 3). For the 
prediction step, make sure to loop over all particles, using the number of particles equal 
to size(P,1). The randn() function may be useful here, as well as the kinematic model 
you wrote in the previous lab. This step should also call the getWeight() function for 
every particle. 
 
For the correction step, you can leverage the pre-existing function called resample(). 
This function implements the approximate approach to weighted sampling described in 
lecture. 
 
To calculate the estimated state, use the pre-existing function called getMeanState(). 
Try to understand how this function works, especially how angle theta is estimated. 
 
 
function [X_est_t, P] = localizeRobot(X_est_tm1, O, Z, M, P) 
  
    % Tseful variables 
    sigma_O = 0.5*max(abs(O)); 
    X_pred_i = zeros(size(X_est_tm1,1),size(X_est_tm1,2)); 
  
    % Prediction Step 
    % X_pred_i = ... 
     
     
     
    % Correction Step 
    % P = ... 
         
     
     
     
    % Calculate State 
    % X_est_t = ... 
     
     
end 

Figure 3: The localizeRobot.m file to be modified in Lab 2. 
 
 



4. GETWEIGHT MODIFICATIONS 
Now scroll to the function called getWeight() as shown in Fig. 4. In this case, you will 
implement the weight calculation for a single particle. This weight should represent how 
close the expected range measurements from the particle state X represent the actual 
range measurements  Z. The map M is used with X to calculate the expected range 
measurements by calling the function getClosestRangeToWalls(). This function, already 
coded for you, finds the range to the closest wall from a sensor position x, y facing in a 
direction theta. You can find the function in its own file called 
getClosestRangeToWalls.m. 
 
function [w] = getWeight(X, Z, M) 
  
    % A useful parameter 
    var_z=0.1; 
  
    % Set the weight 
    %w = ... 
     
end 

Figure 4: The getWeight.m file to be modified in Lab 2. 
 
 
5. CUSTOMIZATION OF PARAMETERS 
To obtain nominal performance, you may leave the parameter values as the default 
values, (see Fig. 5). However, if you want to solve the difficult unknown start problem, 
you will need to set the value of unknownStart to be true in the the initializeVariables() 
function. You will likely need to increase the number of particles to around 250. 
Unfortunately this will slow your code down considerably. 
 
function [ X_real, X_est, U, pathTracked, timeStep, M, P, T, e, nodes, deltaT ] = 
initializeVariables( X_0 ) 
    X_real = X_0; 
    X_est = X_0; 
    U = [0 0]; 
    pathTracked = false; 
    timeStep=1; 
    M = setMap(); 
    deltaT = 0.1; 
    numParticles = 50; 
    unknownStart = false; 
    [P] = initializeParticles(X_0, M, numParticles, unknownStart); 
    T=[]; 
    e=[]; 
    nodes=[]; 
end 

Figure 5: The initializeVariables.m file to be modified in Lab 2. 
 
 
6. LOCALIZATION TIME 
Test your localization algorithm with different numbers of particles. Watch the plot below 
the workspace image to track your localization error. See how long it takes to converge 
(e.g. reduce the error) as a function of the number of particles you use. 
 


