
ARW – Autonomous Robot Workshop

Lab 1

Simulation

1. INTRODUCTION
The purpose of this lab is to introduce participants to the ARW Matlab codebase and
code up the simulation. By the end of the lab, students should understand the codebase
architecture, and how to program the robot to conduct future lab experiments. This lab
can be done in pairs.

2. CODEBASE
Download the codebase stubs from the website. Inside you will find 12 Matlab files.
Most of these files are shown in Fig. 1. Each block corresponds to a single file, although
several supporting functions can be found in some of the files. Once participants modify
the code as described in this document, participants can run the simulator by simply
typing arw at the Matlab prompt. This arw.m script will call the arw_simulator function
which is the heart of the code. It houses a control loop that iteratively calls all the other
functions.

Figure 1: Codebase Architecture

For this lab 1, you will only need to modify two files: arw_simulator.m and
kinematicModel.m. Modifying the control loop in arw_simulator() will allow you to run the
simulator without calling all the non-working functions that you will complete in following
labs. Modifying the kinematicModel.m file will allow the code to simulate the differential
drive kinematics from lecture, and visualize them on the screen.

arw_simulator

arw

simulateMotion
AndPerception

pathTracking
Control

Initialize
Variables

kinematicModel

constructPath

perception.m perception

localizeRobot

3. CONTROL LOOP MODIFICATIONS
Open the file named arw_simulator.m. It should look similar to (but not exactly like) the
code shown in Fig. 2. First, note that the first function call to initializeVariables()
initializes your variables, and if you want to change them, you must open the
corresponding file, although it is not necessary for Lab 1. Second, note the while loop
which acts as the robot’s control loop. This loop will run until either a) the
pathTrackingControl() function returns the output that it has completed tracking the
path, or b) a preset number of iterations has passed.

Within this control loop, you are most interested in the call to the function
simulateMotionAndPerception(). This function will subsequently call kinematicModel()
which you will be modifying later.

Many of the other function calls in the control loop are commented out for Lab 1. Since
your localization hasn’t been coded yet, we assume the estimated state X_est can be
set to the actual state X_real for Lab 1. No motion planning is functioning, so we
comment out the call to constructPath(). Instead of setting the control vector (which
corresponds to right and left motor speeds) using the pathTrackingControl(), we will
hardcode it for the time being. The remainder of arw_simulator() remains the same.

At this point, modify your arw_simulator() function as shown below. As we progress
through the labs, these modifications will be undone and you will be forced to
understand how all the functions work together.

function [X] = arw_simulator(X_0, X_des)

 % Initialize variables
 [X_real, X_est, U, pathTracked, timeStep, M, P, T, e, nodes, deltaT]

= initializeVariables(X_0);

 % Loop over time, until pathtracking is complete
 maxTimeStep = 100;
 while pathTracked == false && timeStep <= maxTimeStep

 % Simulate the actual robot to get the real state, measured
 % odometry O, and range measurements Z
 [X_real, O, Z] = simulateMotionAndPerception(X_real, U, M, deltaT);

 % Localize the robot, i.e. estimate the current state X
 X_est = X_real; %[X_est, P] = localizeRobot(X_est, O, Z, M, P);

 % Construct a new path if it is the first iteration
 %[T, nodes] = constructPath(X_0, X_des, M, T, nodes);

 % Determine the control inputs U to track the path T
 U=[1200 50*timeStep]; T=[0 0 0 1];%[U, T, pathTracked] = pathTrackingControl(X_est, T);

 % Save states and calculate the error e
 X(timeStep,1:3) = X_real;
 e(timeStep) = sqrt((X_real(1)-X_est(1))^2 + (X_real(2)-X_est(2))^2);

 % Plot the output
 plotState(X_real, e, X, Z, M, P, nodes, T);
 timeStep = timeStep + 1;
 end
end

Figure 2: Modified arw_simulator.m file for use with Lab 1.

4. KINEMATICS MODIFICATIONS
Open the file named kinematicModel.m. It should look similar to (but not exactly like) the
code shown in Fig. 3. In this case much of the code is missing. Given the input values of
the previous state X_tm1 (which is supposed to represent Xt-1 = [xt-1 yt-1 θt-1] in units of
meters and radians), and the recent encoder measurements ΔφR and ΔφL in units of
pulses (where one encoder pulse equates to 1/4096 of a revolution), the function must
calculate the updated state Xt = [xt yt θt].

Use the lecture notes to fill in the kinematic equations.

function [X_t] = kinematicModel(X_tm1, deltaEncoderR, deltaEncoderL)

 % Some useful parameters
 robotRadius = 0.2;
 wheelRadius = 0.1;
 pulsesPerRevolution = 4096;
 pulsesToMeters = 2*pi*wheelRadius/pulsesPerRevolution;

 % Calcualate Distance travelled by each wheel based on wheel angular
 % velocity in pulses/s
 % wheelDistanceR = ...
 % wheelDistanceL = ...

 % Calculate the distance travelled by robot center deltaS, and the
 % angle rotated about center deltaTheta
 % deltaS = ...
 % deltaTheta = ...

 % Update States
 % theta_t = ...
 % x_t = ...
 % y_t = ...

 % Set State Vector
 X_t = [x_t y_t theta_t];
end

Figure 3: The kinematicModel.m file to be modified in Lab 1.

5. ROBOT SIMULATIONS 1
If you implemented your kinematics correctly, your circular robot should be driving
around the screen. Play with the hard coded control input vector U. Make sure the robot
doesn’t break any kinematic constraints. Ask if you are unsure. Note, the kinematics
must be working for the rest of your labs to function properly.

